

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Cisco TAPI Developer Guide for
Cisco CallManager 4.1(2)

Text Part Number: OL-5436-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT
ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR
THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE
INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU
ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A
COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as
part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

CCSP, the Cisco Square Bridge logo, Cisco Unity, Follow Me Browsing, FormShare, and StackWise are trademarks of Cisco Systems, Inc.; Changing
the Way We Work, Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA,
CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems
Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step,
GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linksys,
MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect,
RateMUX, Registrar, ScriptShare, SlideCast, SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet
Quotient, TransPath, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (0406R)

Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)
Copyright © 2000-2004, Cisco Systems, Inc.
All rights reserved.

OL-5436-01
C O N T E N T S
Preface xi

Introduction xii

Purpose xii

Audience xiii

New and Changed Information xiii

CiscoTSP 4.1(2) Enhancements xiii

Modified CiscoTSP 4.1(2) Entities xvi

CiscoTSP 4.0 Enhancements xvi

Modified CiscoTSP 4.0 Entities xxviii

Changes From CiscoTSP 3.3 to CiscoTSP 4.0 xxix

CiscoTSP 3.3 Enhancements xxx

New or Changed CiscoTSP 3.3 Entities xxxiii

Changes From CiscoTSP 3.2 to CiscoTSP 3.3 xxxiv

CiscoTSP 3.2 Enhancements xxxv

Changes From CiscoTSP 3.1 to CiscoTSP 3.2 xxxv

CiscoTSP 3.1 Enhancements xxxv

Changes From CiscoTSP 3.0 to CiscoTSP 3.1 xxxvi

New or Changed CiscoTSP 3.1 Entities xxxvii

Organization xxxvii

Related Documentation xxxviii

Required Software xxxviii

Supported Windows Platforms xxxix

Conventions xl
i
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

Contents
Obtaining Documentation xli

Cisco.com xli

Ordering Documentation xli

Documentation Feedback xlii

Obtaining Technical Assistance xlii

Cisco Technical Support Website xlii

Submitting a Service Request xliii

Definitions of Service Request Severity xliii

Obtaining Additional Publications and Information xliv

C H A P T E R 1 Overview 1-1

Architecture 1-2

Call Control 1-3

First-Party Call Control 1-3

Third-Party Call Control 1-3

CTI Port 1-3

CTI Route Point 1-4

CTI Manager (Cluster Support) 1-4

Cisco CallManager Failure 1-5

Call Survivability 1-6

CTI Manager Failure 1-6

Cisco TAPI Application Failure 1-6

Supported Device Types 1-7

Forwarding 1-7

Extension Mobility Support 1-8

Directory Change Notification Handling 1-8

Monitoring Call Park Directory Numbers 1-9

Multiple CiscoTSP 1-9
ii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
Compatibility 1-11

XSI Object Pass Through 1-12

C H A P T E R 2 Cisco TAPI Implementation 2-1

TAPI Line Functions 2-2

lineAccept 2-4

lineAddProvider 2-5

lineAddToConference 2-6

lineAnswer 2-7

lineBlindTransfer 2-8

lineCallbackFunc 2-9

lineClose 2-11

lineCompleteTransfer 2-11

lineConfigProvider 2-12

lineDeallocateCall 2-13

lineDevSpecific 2-14

lineDial 2-16

lineDrop 2-17

lineForward 2-18

lineGenerateDigits 2-21

lineGenerateTone 2-22

lineGetAddressCaps 2-24

lineGetAddressID 2-26

lineGetAddressStatus 2-27

lineGetCallInfo 2-28

lineGetCallStatus 2-28

lineGetConfRelatedCalls 2-29

lineGetDevCaps 2-30

lineGetID 2-32

lineGetLineDevStatus 2-33
iii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
lineGetMessage 2-34

lineGetNewCalls 2-35

lineGetNumRings 2-37

lineGetProviderList 2-38

lineGetRequest 2-39

lineGetStatusMessages 2-40

lineGetTranslateCaps 2-41

lineHandoff 2-42

lineHold 2-43

lineInitialize 2-44

lineInitializeEx 2-46

lineMakeCall 2-48

lineMonitorDigits 2-49

lineMonitorTones 2-50

lineNegotiateAPIVersion 2-51

lineNegotiateExtVersion 2-52

lineOpen 2-53

linePark 2-56

linePrepareAddToConference 2-58

lineRedirect 2-59

lineRegisterRequestRecipient 2-61

lineRemoveProvider 2-62

lineSetAppPriority 2-63

lineSetCallPrivilege 2-65

lineSetNumRings 2-66

lineSetStatusMessages 2-68

lineSetTollList 2-69

lineSetupConference 2-71

lineSetupTransfer 2-72

lineShutdown 2-73
iv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
lineTranslateAddress 2-74

lineTranslateDialog 2-76

lineUnhold 2-78

lineUnpark 2-78

TAPI Line Messages 2-79

LINE_ADDRESSSTATE 2-80

LINE_APPNEWCALL 2-82

LINE_CALLINFO 2-83

LINE_CALLSTATE 2-84

LINE_CLOSE 2-89

LINE_CREATE 2-90

LINE_DEVSPECIFIC 2-91

LINE_GENERATE 2-92

LINE_LINEDEVSTATE 2-93

LINE_MONITORDIGITS 2-94

LINE_MONITORTONE 2-95

LINE_REMOVE 2-96

LINE_REPLY 2-97

LINE_REQUEST 2-98

TAPI Line Structures 2-99

LINEADDRESSCAPS 2-101

LINEADDRESSSTATUS 2-113

LINEAPPINFO 2-115

LINECALLINFO 2-117

LINECALLLIST 2-124

LINECALLPARAMS 2-126

LINECALLSTATUS 2-128

LINECARDENTRY 2-133

LINECOUNTRYENTRY 2-135

LINECOUNTRYLIST 2-137
v
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
LINEDEVCAPS 2-139

LINEDEVSTATUS 2-146

LINEEXTENSIONID 2-148

LINEFORWARD 2-148

LINEFORWARDLIST 2-151

LINEGENERATETONE 2-152

LINEINITIALIZEEXPARAMS 2-153

LINELOCATIONENTRY 2-155

LINEMESSAGE 2-158

LINEMONITORTONE 2-159

LINEPROVIDERENTRY 2-160

LINEPROVIDERLIST 2-161

LINEREQMAKECALL 2-162

LINETRANSLATECAPS 2-163

LINETRANSLATEOUTPUT 2-166

TAPI Phone Functions 2-168

phoneCallbackFunc 2-169

phoneClose 2-170

phoneDevSpecific 2-170

phoneGetDevCaps 2-171

phoneGetDisplay 2-172

phoneGetLamp 2-173

phoneGetMessage 2-174

phoneGetRing 2-175

phoneGetStatus 2-177

phoneGetStatusMessages 2-178

phoneInitialize 2-180

phoneInitializeEx 2-181

phoneNegotiateAPIVersion 2-184

phoneOpen 2-185
vi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
phoneSetDisplay 2-187

phoneSetLamp 2-188

phoneSetStatusMessages 2-190

phoneShutdown 2-192

TAPI Phone Messages 2-193

PHONE_BUTTON 2-194

PHONE_CLOSE 2-197

PHONE_CREATE 2-198

PHONE_REMOVE 2-199

PHONE_REPLY 2-200

PHONE_STATE 2-201

TAPI Phone Structures 2-204

PHONECAPS 2-204

PHONEINITIALIZEEXPARAMS 2-206

PHONEMESSAGE 2-208

PHONESTATUS 2-209

VARSTRING 2-212

Wave 2-214

waveOutOpen 2-215

waveOutClose 2-217

waveOutGetDevCaps 2-217

waveOutGetID 2-218

waveOutPrepareHeader 2-219

waveOutUnprepareHeader 2-219

waveOutGetPosition 2-220

waveOutWrite 2-221

waveOutReset 2-222

waveInOpen 2-222

waveInClose 2-224

waveInGetID 2-225
vii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
waveInPrepareHeader 2-225

waveInUnprepareHeader 2-226

waveInGetPosition 2-227

waveInAddBuffer 2-228

waveInStart 2-228

waveInReset 2-229

C H A P T E R 3 Cisco Device Specific Extensions 3-1

Cisco Line Device Specific Extensions 3-1

Structures 3-3

CCiscoLineDevSpecific 3-3

Message Waiting 3-6

Message Waiting Dirn 3-7

Audio Stream Control 3-8

Set Status Messages 3-11

Swap-Hold/SetupTransfer 3-12

Redirect Reset Original Called ID 3-14

Port Registration per Call 3-15

Setting RTP Parameters for Call 3-18

Redirect Set Original Called ID 3-19

Join 3-20

Redirect FAC CMC 3-22

Blind Transfer FAC CMC 3-23

CTI Port Third Party Monitor 3-25

Cisco Phone Device Specific Extensions 3-26

CCiscoPhoneDevSpecific 3-26

Device Data Passthrough 3-28

Messages 3-30

Call Tone Changed Events 3-35

Message Sequence Charts 3-36
viii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
Manual Outbound Call 3-37

Blind Transfer 3-41

Redirect Set original Called (TxToVM) 3-43

Shared Line Scenarios 3-43

Presentation Indication 3-49

Forced Authorization and Client Matter Code Scenarios 3-59

C H A P T E R 4 Cisco TAPI Examples 4-1

MakeCall 4-2

OpenLine 4-3

CloseLine 4-7

A P P E N D I X A CiscoTSP Interfaces A-1

Cisco TAPI Version 2.1 Interfaces A-1

Core Package A-1

IN D E X
ix
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Contents
x
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface

This chapter introduces Cisco Telephony Application Programmer’s Interface
(TAPI) implementation, describes the purpose of this document, and outlines the
required software. The chapter includes the following topics:

• Introduction

• Purpose

• Audience

• New and Changed Information

• Organization

• Related Documentation

• Required Software

• Supported Windows Platforms

• Conventions

• Obtaining Documentation

• Documentation Feedback

• Obtaining Technical Assistance

• Obtaining Additional Publications and Information
xi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Introduction
Introduction
Telephony Application Programmer’s Interface (TAPI) comprises the set of
classes and principles of operation that constitute a telephony application
programming interface. TAPI implementations provide the interface between
computer telephony applications and telephony services. The Cisco CallManager
includes a TAPI Service Provider (Cisco TSP). The Cisco TAPI Service Provider
allows developers to create customized IP telephony applications for Cisco users;
for example, voice mail with other TAPI compliant systems, automatic call
distribution (ACD), and caller ID screen pops. Cisco TSP enables the Cisco IP
Telephony system to understand commands from the user-level application such
as Cisco SoftPhone via the operating system.

The Cisco TAPI implementation uses the Microsoft TAPI v2.1 specification and
supplies extension functions to support Cisco IP Telephony Solutions. To enable
a Cisco TAPI-based solution, you must have the following:

• TAPI support/service running on the operating system

• A TAPI-based software application

• A Cisco IP Telephony phone system

Note Using Cisco TAPI 2.1 TSP via the TAPI 3.x compatibility layer is not supported.

Purpose
This document describes the Cisco TAPI implementation by detailing the
functions that comprise the implementation software and illustrating how to use
these functions to create applications that support the Cisco IP Telephony
hardware, software, and processes. Use this document with the
Cisco CallManager manuals to develop applications.

A primary goal of a standard Application Programming Interface (API) such as
TAPI specifies providing an unchanging programming interface under which
varied implementations may stand. Cisco's goal in implementing TAPI for the
Cisco CallManager platform remains to conform as closely as possible to the
TAPI specification, while providing extensions that enhance TAPI and expose the
advanced features of Cisco CallManager to applications.
xii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Audience
As new versions of Cisco CallManager and the Cisco TSP are released, variances
in the API should be very minor, and should tend in the direction of compliance.
Cisco stays committed to maintaining its API extensions with the same stability
and reliability, though additional extensions may be provided as new
Cisco CallManager features become available

Audience
Cisco intends this document to be for use by telephony software engineers who
are developing Cisco telephony applications that require TAPI. This document
assumes that the engineer is familiar with both the C or C++ languages and the
Microsoft TAPI specification.

New and Changed Information
This section describes any new features and or changes for Cisco TAPI that are
pertinent to the specified release of Cisco CallManager.

CiscoTSP 4.1(2) Enhancements
The following describe the CiscoTSP enhancements for Cisco CallManager
4.1(2).

FAC and CMC Support

There are two CallManager features, Forced Authorization Code (FAC) and
Client Matter Code (CMC), that the CiscoTSP has been enhanced to support and
interact with. The FAC feature allows the System Administrator the ability to
require users to enter an authorization code in order to reach certain dialed
numbers. The CMC feature allows the System Administrator the ability to require
users to enter a client matter code in order to reach certain dialed numbers.

The CallManager alerts a user of a phone that a FAC or CMC must be entered by
sending a “ZipZip” tone to the phone which the phone in turn plays to the user.
The CiscoTSP will send a new LINE_DEVSPECIFIC event to the application
whenever a “ZipZip” tone is to be played by the application. This can be used by
xiii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
the application to indicate when a FAC or CMC is required. In order for an
application to start receiving the new LINE_DEVSPECIFIC event, it must
perform the following steps:

• lineOpen with dwExtVersion set to 0x00050000 or higher

• lineDevSpecific - Set Status Messages to turn on the Call Tone Changed
device specific events

The FAC or CMC code can be entered by the application using the lineDial() API.
The code may be entered in its entirety or it may be entered one digit at a time.
An application may also enter the FAC and CMC code in the same string as long
as they are separated by a “#” character and also ended with a “#” character. The
“#” character at the end is optional as it only serves to indicate to the CallManager
that dialing is complete.

If an application does a lineRedirect() or a lineBlindTransfer() to a destination
that requires a FAC or CMC, then the TSP will return an error. The error returned
by the TSP indicates whether a FAC, CMC, or both is required. The TSP supports
two new lineDevSpecific() functions, one for Redirect and one for BlindTransfer,
that will allow an application to enter a FAC or CMC, or both, when either
Redirecting or Blind Transferring a call.

CTI Port Third-Party Monitoring

Prior to CiscoTSP 4.1, the TSP allowed TAPI applications to open a CTI port
device in first party mode. First party mode means that either the application is
terminating the media itself at the CTI port or that the application is using the
Cisco Wave Drivers to terminate the media at the CTI port. This is also known as
registering the CTI port device.

In all releases prior to CiscoTSP 4.1, there was no way for a TAPI application
using the CiscoTSP to open a CTI port in third party mode. Third party mode
means that the application is interested in just opening the CTI port device, but it
does not want to handle the media termination at the CTI port device. An example
of this would be a case where an application would want to open a CTI port in
third party mode because it is interested in monitoring a CTI port device that has
already been opened/registered by another application in first party mode. Please
note that opening a CTI Port in third party mode does not prohibit the application
from performing call control operations on the line or on the calls of that line.
xiv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
In CiscoTSP 4.1, the TSP has been enhanced to allow TAPI applications to open
a CTI port device in third party mode. This will be exposed to TAPI applications
via a new lineDevSpecific() API. In order to use the new lineDevSpecific() API,
the application must negotiate for at least extension version 5.0 and set the high
order bit so that the extension version is set to at least 0x80050000.

The TAPI architecture allows two different TAPI applications to be running on the
same PC using the same TSP. In this situation, if both applications want to open
the CTI port, there could be problems. Therefore, the first application to open the
CTI port will control which mode in which the second application is allowed to
open the CTI port. In other words, both or all applications running on the same
PC, using the same TSP, must open CTI ports in the same mode in order to be
successful. If the second application tries to open the CTI port in a mode that is
different from the way in which the first application opened it, then the
lineDevSpecific() request will fail.

QSIG Path Replacement

CiscoTSP 4.1(2) supports events generated because of the Cisco CallManager
QSIG Path Replacement feature.

Note Call information on a tromboned call across a QSIG gateway is not consistent.
Due to the limitations in the protocol, the application would see inconsistent
values for LINECALLINFO RedirectingID/name and CalledID/Name.

Progressing Call State

CiscoTSP 4.1(2) supports CtiProgressingCallState as a TAPI
LINECALLSTATE_UNKNOWN | CLDSMT_CALL_PROGRESSING_STATE
(0x01000000). This call state is reported to the application if it has negotiated
extension version 0x00050001 during lineOpen. Similar changes are made to
report the callStatus when queried using lineGetCallStatus. The call features
associated to this call state is just LINE_DROP.

The current cause codes associated with ProgressingCallState are standard Q931
cause codes and the application must be able to decode them if required. The
cause codes will be reported only when the application has negotiated extension
version 0x00050001 or greater.
xv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Transfer/Conference Destination DN in Setup Request Support

CiscoTSP 4.1(2) is modified to accept the consult DN for TAPI lineSetupTransfer
and lineSetupConference requests through
LINECALLPARAMS::devSpecificdata. The application has to negotiate
extension version 0x00050002 or greater to provide the destination DN in these
requests. The support has been added for promptly dialing the consult
destinations. The earlier TSP implementation allowed applications to dial the
destination DN using lineDial method, which introduces a dial delay for each digit
resulting in a delay in establishing a consult call.

Modified CiscoTSP 4.1(2) Entities
Several Cisco TAPI device structures, functions, and messages that have been
modified in this version enhance overall functionality. This table lists each
modified entity and its type.

CiscoTSP 4.0 Enhancements
The following describe the CiscoTSP 4.0 enhancements for Cisco CallManager
4.0.

Dynamic Port Registration

The purpose of the Dynamic Port Registration feature is to allow applications to
specify the IP address and UDP port number on a call-by-call basis. Currently, the
IP address and UDP port number are specified when a CTI Port registers and is

Entity Type

LINE_DEVSPECIFIC TAPI line message

LineDevSpecific TAPI line function

lineSetupTransfer TAPI line function

lineSetupConference TAPI line function
xvi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
static through the life of the registration of the CTI Port. When media is requested
to be established to the CTI Port, the same static IP address and UDP port number
is used for every call

This feature allows an application to be able to specify the IP address and UDP
port number on a call-by-call basis.

An application that wishes to use Dynamic Port Registration must specify the IP
address and UDP port number on a call before invoking any features on the call.
If the feature is invoked before the IP address and UDP port number are set, the
feature will fail and the call state will be set depending on when the media timeout
occurs.

Media Termination at Route Point

The purpose of the Media Termination at Route Point feature is to allow
applications to terminate media at route points. This feature enables applications
to pass the IP address and port number where they want the call at the route point
to have media established.

The following features are supported at route points:

• Answer

• Multiple active calls

• Redirect

• Hold

• UnHold

• Blind Transfer

• DTMF Digits

• Tones

Redirect Support for Blind Transfer

The purpose of the Redirect support for blind transfer is to eliminate problems
arising from the consult call created during a blind transfer in the earlier
CiscoTSPs and also bring it in accordance with TAPI specification. This means
that lineBlindTransfer() is now properly supported.
xvii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Redirect Set Original Called ID

The purpose of the Redirect Set Original Called ID is to allow applications to
redirect a call on a line to another destination while allowing the applications to
set the OriginalCalledID to any value.

This request can be used to implement the Transfer to Voice Mail feature
(TxToVM). Using this feature, the applications can transfer the call on a line
directly to another line's voice mailbox. TxToVM can be achieved by specifying
the following fields in the above request: voice mail pilot as the destination DN
and the DN of the line to whose voice mail box the call needs to be transferred to
as the preferredOriginalCalledID.

Multiple Calls per Line Appearance

Maximum Number of Calls

With the current Cisco CallManager 3.3, the maximum number of calls per line
appearance (LA) is limited to two. In Cisco CallManager 4.0, the maximum
number of calls per LA has been changed to be database configurable. This means
that the CiscoTSP has been enhanced to support more than 2 calls per line on
MCD (Multiple Call Display) devices. An MCD device is a device that can
display more than 2 call instances per DN at any given time. For non-MCD
devices, the CiscoTSP will only support a maximum of 2 calls per line. The
absolute maximum number of calls per line appearance is 200.

Busy Trigger

In Cisco CallManager 4.0, there is a new setting, busy trigger, that indicates the
limit on the number of calls per line appearance before the CallManager will
reject an incoming call. The busy trigger setting is database configurable, per line
appearance, per cluster. The busy trigger setting replaces the existing call waiting
flag per DN. Since the busy trigger setting cannot be modified using the
CiscoTSP, there are no changes in the TAPI interface exposed by the CiscoTSP as
a result of this feature, but it will have an effect on applications that use the
existing call waiting flag per DN.
xviii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
CFNA Timer

Prior to Cisco CallManager 4.0, the Call Forward No Answer (CFNA) timer was
configured through a service parameter. This has been changed in Cisco
CallManager 4.0 to be database configurable, per DN, per cluster. This timer is
not configurable using the CiscoTSP, so there are no changes to the CiscoTSP to
support this feature, but this change will have an effect on applications that use
the CFNA feature of the CallManager.

Shared Line Appearance

In Cisco CallManager 3.3, the Cisco CallManager supports the ability for a line
on a device to share the same directory number (DN) as a line on a different
device. This functionality is known as Shared Line Appearance. The CiscoTSP
3.3 did not support opening two different lines that each shares the same DN.

In Cisco CallManager 4.0, several changes were made in the Cisco CallManager
to the Shared Line Appearance feature. The CiscoTSP has been enhanced in
Release 4.0 to support Shared Line Appearances.

In Cisco CallManager 3.3, if there is more than one device that shares the same
line appearance, only one of those devices can have an active (connected) call.
Also, if one of those devices has an active call using this line appearance, then no
other device can use this line appearance anymore.

In Cisco CallManager 4.0, the Cisco CallManager has been enhanced to allow
multiple active calls to exist concurrently on each of the different devices that
share the same line appearance. Each device is still limited to at most one active
call and multiple hold or incoming calls at any given time. This functionality can
be supported by applications that use the CiscoTSP to monitor and control shared
line appearances.

If a call is active on a line that is a shared line appearance with another line, then
the call will appear on the other line with the dwCallState=CONNECTED and the
dwCallStateMode=INACTIVE. Even though the call party information may not
be displayed on the actual IP Phone for the call at the other line, the call party
information is still be reported by the TSP on the call at the other line. This gives
the application the ability to decide if it wishes to block this information or not.
Also, no call control functions are allowed on a call that is in the CONNECTED
INACTIVE call state.
xix
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
The CiscoTSP does not support shared lines on CTI Route Point devices.

In the scenario where a line is calling a DN that contains multiple shared lines,
the dwCalledIDName in the LINECALLINFO structure for the line with the
outbound call may be empty or set randomly to the name of one of the shared
DNs. The reason for this is the Cisco TSP and the Cisco CallManager cannot
resolve which of the shared DNs you are calling until the call is answered.

Note CiscoTSP does not support configurations that include devices with two or more
lines with the same directory numbers (DN) in different partitions.

Select Calls

There is a new softkey “select” on the IP Phones that allows a user the ability to
select call instances in order to perform feature activation, such as transfer or
conference, on those calls. The action of selecting a call on a line locks that call
so that it cannot be selected by any of the shared line appearances. Pressing the
“Select” key on a selected call will de-select the call.

The ability to select calls is not supported by the CiscoTSP. The reason for this is
that all of the Transfer and Conference functions contain parameters indicating
which calls that the operation should be invoked on. Therefore, there is no reason
to support “Select” through the TSP.

The CiscoTSP supports the events caused by a user selecting a call on a line that
is being monitored by the application. When a call on a line is selected, all of the
other lines that share the same line appearance will see the call state change to
dwCallState=CONNECTED, and dwCallStateMode=INACTIVE.

Transfer Changes

In Cisco CallManager 3.3, the “Transfer” softkey had two different behaviors
depending on the number of calls at that DN.

1. If there was only one active call at the DN, the first invocation of the
“Transfer” softkey resulted in putting the active call on hold and initiating a
new call using the same DN. Once the new call was setup, the second
invocation of the “Transfer” softkey would transfer the calls.
xx
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
2. If there were already two calls in the line appearance, the first invocation of
the “Transfer” softkey resulted in putting the active call on hold, but not
initiating a new call. If the other call was not an incoming call, it was
highlighted. Then, the second invocation of the “Transfer” softkey would
transfer the calls.

In Cisco CallManager 4.0, the “Transfer” softkey has been changed so that it
always initiates a new consultation call. This is the behavior described in #1
above. The “Transfer” softkey can no longer be used to perform behavior #2.
Behavior #2, which is sometimes known as “Arbitrary Transfer,” is not necessary
anymore with the addition of the Direct Transfer feature.

Because of these changes, the CiscoTSP has removed the lineDevSpecific() -
Swap Hold Setup Transfer function. The lineDevSpecific() - Swap Hold Setup
Transfer function performs the functionality described in behavior #2 above and
as mentioned above is not needed anymore because of the addition of the “Direct
Transfer” feature.

Direct Transfer

In Cisco CallManager 4.0, a new softkey, “Direct Transfer” has been provided to
transfer the other end of one established call to the other end of another
established call, while dropping the feature initiator from those two calls. Here,
an established call refers to a call that is either in the onhold state or in the
connected state. The “Direct Transfer” feature will not initiate a consultation call
and will not put the active call onhold.

The addition of the “Direct Transfer” feature makes the CiscoTSP function
lineDevSpecific() - Swap Hold Setup Transfer obsolete. A TAPI application can
invoke the “Direct Transfer” feature using the TAPI lineCompleteTransfer()
function on two calls that are already in the established state. This also means that
the two calls do not have to be initially set up using the lineSetupTransfer()
function.
xxi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Conference Changes

In Cisco CallManager 3.3, the “Conference” softkey had two different behaviors
depending on the number of calls at that DN.

1. If there was only one active call at the DN, the first invocation of the
“Conference” softkey resulted in putting the active call on hold and initiating
a new call using the same DN. Once the new call was setup, the second
invocation of the “Conference” softkey created a conference call between all
of the parties connected on both calls.

2. If there were already two calls in the line appearance, the first invocation of
the “Conference” softkey resulted in putting the active call on hold, but not
initiating a new call. If the other call is not an incoming call, it would be
highlighted. Then, the second invocation of the “Conference” softkey created
a conference call between all of the parties connected on both calls.

In Cisco CallManager 4.0, the “Conference” softkey has been changed so that it
always initiates a new consultation call. This is the behavior described in #1
above. The “Conference” softkey can no longer be used to perform behavior #2.
Behavior #2, which is sometimes known as “Arbitrary Conference” is not
necessary anymore with the addition of the “Join” feature which is described later
in this document.

Call Join

In Cisco CallManager 4.0, a new softkey, “Join” has been provided to join all the
parties of established calls, at least two, into one conference call. The “Join”
feature will not initiate a consultation call and will not put the active call onhold.
It also can include more than 2 calls, resulting in a call with more than 3 parties.

In Cisco CallManager 4.0, the CiscoTSP has exposed the “Join” feature as a new
device specific function which will be known as lineDevSpecific() - Join. This
function can be performed on two or more calls that are already in the established
state. This also means that the two calls do not have to be initially set up using the
lineSetupConference() or linePrepareAddToConference() functions.

The CiscoTSP has also been enhanced to support the lineCompleteTransfer()
function with the dwTransferMode=Conference. This function allows a TAPI
application to join all the parties of two, and only two, established calls into one
conference call.
xxii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
The CiscoTSP has also been enhanced to support the lineAddToConference()
function to join a call to an existing conference call that is in the ONHOLD state.

There is a feature interaction issue involving Join, Shared Lines, and the
Maximum Number of Calls. The issue occurs when you have two shared lines and
the maximum calls on one line is less than the maximum calls on the other line.
If a Join is performed on the line that has more maximum calls, then this issue will
be encountered if the primary call of the Join is beyond the maximum number of
calls for the other shared line.

For example, one shared line, A, has a maximum number of calls set to 5 and
another shared line, A', has a maximum number of calls set to 2. The scenario
involves the following steps:

1. A calls B. B answers. A puts the call onhold.

2. C calls A. A answers. C puts the call onhold.

At this point, line A has two calls in the ONHOLD state and line A' has two calls
in the CONNECTED_INACTIVE state.

3. D calls A. A answers.

At this point, the call will presented to A, but it will not be presented to A'. The
reason for this is because the maximum calls for A' is set to 2.

4. A performs a Join operation either through the phone or using the
lineDevSpecific - Join API to join all the parties in the conference. It uses the
call between A and D as the primary call of the Join operation.

Because the call between A and D was used as the primary call of the Join, the
ensuing conference call will not be presented to A'. Both calls on A' will go to the
IDLE state. The end result is that A' will not see the conference call that exists on
A.

Privacy Release

In Cisco CallManager 3.2 and Cisco CallManager 3.3, the privacy feature was
controlled by a service wide parameter, BargeEnabled. This parameter has been
removed in Cisco CallManager 4.0.

The Privacy feature is being fully implemented in Cisco CallManager 4.0,
allowing the user to dynamically alter its privacy setting. The privacy setting will
affect all existing and future calls on the device.
xxiii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
In Cisco CallManager 4.0, the CiscoTSP is not being enhanced to support the
Privacy Release feature.

Barge and cBarge

The Barge feature is currently supported in Cisco CallManager 3.3. In
Cisco CallManager 3.3, the Barge feature always uses the built-in conference
bridge at the target device. The Cisco CallManager 3.3 version of the CiscoTSP
did not support handling the events caused by the invocation of the Barge feature
on the phones. The TSP also did not support an API that allows the invocation of
the Barge feature.

In Cisco CallManager 4.0, there are changes in the CallManager that allow the
TSP to support the events caused by the Barge feature. Also in Cisco CallManager
4.0, the CallManager has implemented a new feature, cBarge, which always uses
the shared conference resource in the CallManager, also known as a conference
bridge, as opposed to the built-in bridge on the phone. In Cisco CallManager 4.0,
the TSP does not support an API to invoke either the Barge feature or the cBarge
feature. The TSP has only been modified to support the events caused by the
invocation of the Barge and cBarge features.

TSP Auto Update Functionality

CiscoTSP supports auto update functionality so that the latest plug-in can be
downloaded and installed on client machine. The new plug-in will be QBE
compatible with the connected CTIManager. When the Call Manager is upgraded
to a higher version, and CiscoTSP auto update functionality is enabled, user will
receive the latest compatible CiscoTSP, which will work with the upgraded Call
Manager. This makes sure that the applications work as expected with the new
release of CallManager (provided the new call manager interface is backward
compatible with the TAPI interface). The CiscoTSP installed locally on the client
machine allows application to set the auto update options as part of the CiscoTSP
configuration. You can opt for updating the CiscoTSP in following different ways:

• Update CiscoTSP, whenever a different (has to be higher version that
existing) version is available on Call Manager server

• Update CiscoTSP whenever there is a QBE protocol version mismatch
between the existing CiscoTSP and the CM version.

• Do not update CiscoTSP using Auto Update functionality.
xxiv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
AutoInstall Behavior

As part of initialization of CiscoTSP, when application does lineInitializeEx,
CiscoTSP will query the current TSP plugin version information available on
CallManager server. Once this information is available CiscoTSP will compare
the installed CiscoTSP version with the plugin version. If user has selected an
option for auto update, CiscoTSP will trigger the update process. As part of Auto
update, CiscoTSP will behave in following ways on different platforms.

On Windows 95, Windows 98, Windows ME

Because CiscoTSP is in use and locked when application does lineInitializeEx,
the auto update process will request user to close all the running applications, in
order to install the new TSP version on the client setup. If user closes all the
running applications, CiscoTSP auto update process will succeed and user will be
informed about the success. If user does not close running applications and still
continue with the installation, new version of CiscoTSP will not be installed and
corresponding error will be reported to applications.

On Windows NT

Once CiscoTSP detects that an upgradeable version is available on Call Manager
server and user has selected to auto update, CiscoTSP will report 0 lines to
application and will remove the CiscoTSP provider from the provider list. It will
then try to stop the telephony service to avoid any locked files during auto
upgrade. If the telephony service can be stopped TSP will be auto updated silently
and the service will be restarted. Applications must be reinitiatlized in order to
start using the CiscoTSP. If the telephony service could not be stopped then
CiscoTSP will install the new version and inform user to restart the system. User
has to restart the system in order to use the new CiscoTSP.

On Windows 2000/XP

Once CiscoTSP detects that an upgradeable version is available on Call Manager
server and user has selected to auto update, CiscoTSP will report 0 lines to
application and will remove the CiscoTSP provider from the provider list. If a new
TSP version is detected during reconnect time, the running applications will
receive LINE_REMOVE on all the lines which are already initialized and are in
OutOfService state. Then CiscoTSP will silently upgrade itself to new version
downloaded from CM and will add back the provider to provider list. All the
running applications will receive LINE_CREATE messages.
xxv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
WinXP supports multiple user log on sessions (fast user switching), in Parche
release auto update is only supported for the first logon user. If there are multiple
active log on sessions, TSP will only support the auto update functionality for the
first logged on user.

Note In case user has a multiple CiscoTSPs installed on the client machine, only first
CiscoTSP instance is enabled to setup the auto update configuration. All
CiscoTSPs are upgraded to a common version upon version mismatch. From
“Control Panel/Phone & Modem Options/Advanced/CiscoTSP001” - General
page will show the options for auto update.

User can change the location of Plugin to be a different machine than the
CallManager server. It is a CTI service parameter which can be configured, the
default is “//<CMServer>//ccmpluginsserver”.

If Silent upgrade fails on any of the listed platforms due to any reason (e.g. locked
files encountered during upgrade on Win95/98/ME), the old CiscoTSP provider/s
will not be added back to provider list to avoid any looping of auto update process.
User will have to clear the update options and will have to add back the providers
to provider list manually. User can update the CiscoTSP manually or by fixing the
problem/s encountered during auto update and reinitializing TAPI to trigger the
auto update process.

Note The details of user interface are provided as part of TSP install and configuration
guide.

Note TSPAutoInstall.exe has UI screens and can proceed to display these screens only
when the telephony service has enabled the LocalSystem logon option with
“Allow Service to interact with user”. If logon option is not set as LocalSystem or
logon option is LocalSystem but “Allow Service to interact with User” is disabled
then TSP will not be able to launch the AutoInstall UI screens and will not
continue with AutoInstall. User has to make sure that the following logon options
are set for the telephony service.

Logon as : LocalSystem

Enable checkbox : “Allow Service to interact with Desktop”
xxvi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
These telephony service settings, when changed, requires the user to manually
restart the service in order to take into effect.

If, after changing the settings to above values the user does not restart the service,
the TSP checks for “Allow Service to interact with user” will be positive (as the
configuration is updated for the service in the database) but AutoInstall UI can not
be displayed. TSP will continue to put the entry for TSPAutoInstall.exe under
Registry key RUNONCE. This will help autoinstall to run when the machine
reboots next time.

QoS Support

CiscoTSP 4.0 supports the Cisco baseline for Quality of service documented in
EDCS-206468. TSP marks the IP DSCP (Differentiated Services Code Point) for
QBE control signals flowing from TSP to CTI with Class 3 DSCP marking as
0x18. Cisco TAPI Wave driver will mark the RTP packets with EF DSCP marking
as 0x2E. TSP does not allow user to configure these values instead defaults them
to above values. There is no change in the TAPI interface to support QoS. If the
underlying network is enabled for DSCP it will make use of the IP header DSCP
bit marking and route the traffic accordingly.

Forwarding Changes

There is a slight change in behavior in CiscoTSP 4.0 in forwarding. The scenario
is as follows. A line is set to FwdAll to the Voice Mail Pilot Number by the user
of the phone manually on the phone. Then, an application is used to turn
forwarding off on the same line. Prior to CiscoTSP 4.0 and Cisco CallManager
4.0, the calls that come into the line would still get forwarded to voice mail. In
CiscoTSP 4.0 and Cisco CallManager 4.0, the calls that come into the line will no
longer be forwarded to voice mail.

Presentation Indication Flag

There is a need to separate the presentability aspects of a number (calling, called,
and so on) from the actual number itself. For example, when the number is not to
be displayed on the IP phone, the information is still needed by another system
like Unity VM etc. Hence, each number/name of display name needs to be
associated with a Presentation Indication (PI) flag, which will indicate whether
the information should be displayed to the user or not.
xxvii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
This feature can be set up as follows:

• On a Per Call Basis—Route Patterns and Translation Patterns can be used to
set or reset PI flags for various partyDNs/Names on a per call basis. If the
pattern matches the digits, then the PI settings associated with the pattern will
be applied to the call information.

• On a Permanent basis—A trunk device can be configured with “Allow” or
“Restrict” options for parties. This will set the PI flags for the corresponding
party information for all calls from this trunk.

In Cisco CallManager 4.0, the CiscoTSP is being enhanced to support this feature.
If calls are made via Translation patterns with the all the flags set to Restricted
then the CallerID/Name, ConnectedID/Name and RedirectionID/Name will be
sent to applications as Blank. The LINECALLPARTYID flags will also be set to
Blocked if both the Name and Party number are set to Restricted.

Modified CiscoTSP 4.0 Entities
Several Cisco TAPI device structures, functions, and messages that have been
modified in this version enhance overall functionality. This table lists each
modified entity and its type.

Entity Type

LINE_CALLSTATE TAPI Line Message

LINEADDRESSCAPS TAPI Line Device Structure

LINECALLSTATUS TAPI Line Device Structure

lineAddToConference TAPI Line Function

lineCompleteTransfer TAPI Line Function

lineDevSpecific TAPI Line Function
xxviii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Changes From CiscoTSP 3.3 to CiscoTSP 4.0

Line In-Service or Out-of-Service

In CiscoTSP 3.0, by default a line is in service when opened. With cluster
abstraction (the CTI Manager) in CiscoTSP 3.1, after an application successfully
opens a line or phone, the line or phone may be out-of-service. Immediately after
opening the device, the application should check its status. If the device is
out-of-service, the application should wait for an in-service message before
initiating a TAPI request that results in Cisco CallManager interaction. If an
application initiates such a request while the device is out-of-service, CiscoTSP
responds with a resource unavailable message.

This is a change from the behavior in CiscoTSP 3.0. In CiscoTSP 3.0, when a
device successfully opened, it was always in-service.

This change will not be an issue for an application if the application checks the
line or phone status immediately after the lineOpen or phoneOpen function call.

LINE_CALLINFO

Added complete support for the fields of the LINE_CALLINFO message in
CiscoTSP 3.1.

The LINE_CALLINFO parameter dwCalledID correctly reflects the
OriginalCalledParty information.

User Deletion from Directory

In previous releases, when the TSP user is removed from the Cisco CallManager
directory, the TSP would place all of the lines and phones
OUTOFSERVICE/SUSPENDED indefinitely until the lines and phones are
closed.

In CiscoTSP 3.3, when the TSP user is removed, the TSP now closes all of the
lines and phones and sends LINE_CLOSE/PHONE_CLOSE messages. After
doing this, the TSP removes all of the lines and phones and sends
LINE_REMOVE/PHONE_REMOVE messages.
xxix
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Removal of lineDevSpecific() - Swap Hold Setup Transfer

In CiscoTSP 4.0, the lineDevSpecific() - Swap Hold Setup Transfer function has
been removed because of the changes made to the Transfer feature in the
Cisco CallManager and because of the addition of the Direct Transfer feature.

Call Reason Enhancements

In CiscoTSP 3.3, the TSP did not properly support the TAPI call reason model.
For example, in a lineRedirect() function, both the party that was redirected and
the party that the call was redirected to had the
LINECALLREASON_REDIRECT set in the dwReason of LINECALLINFO. In
TAPI, only the destination of the redirect is supposed to have
LINECALLREASON_REDIRECT while the party that was redirected should
maintain the same dwReason that it had before the redirect occurred. In CiscoTSP
4.0, the TSP properly supports call reasons as defined in the TAPI specification.

Changes to phoneSetDisplay()

In releases prior to Cisco CallManager 4.0, Cisco CallManager messages that
were passed to the phone would automatically overwrite any messages sent to the
phone using phoneSetDisplay(). In Cisco CallManager 4.0, the message sent to
the phone in the phoneSetDisplay() API will remain on the phone until the phone
is rebooted. If the application wants to clear the text from the display and see the
Cisco CallManager messages again, a NULL string, not spaces, should be passed
in the phoneSetDisplay() API. In other words, the lpsDisplay parameter should be
NULL and the dwSize should be set to 0.

CiscoTSP 3.3 Enhancements
The following CiscoTSP 3.3 enhancements for Cisco CallManager 3.3 exist:

• Support for linePark and lineUnpark

• Support for monitoring CallPark Directory Numbers using lineOpen

• Support for Cisco IP Phones 7902, 7912, and 7935
xxx
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Reporting TSP Initialization Problems or Errors to the Application

CiscoTSP now reports the initialization error code through the registry key that
provide applications to better diagnose the initialization problems. The newly
added registry key is HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems,
Inc.\Cisco TSP\Cisco TSP001\TSPInitializationErrorCode.

Note Each TSP instance (in case of multiple TSP installation) has its own
TSPInitializationErrorCode in the respective registry key
HKEY_LOCAL_MACHINE\SOFTWARE\cisco systems, Inc.\Cisco TSP\Cisco
TSPXXX.

The following error codes get exposed to the user. The definitions are located in
CiscoLineDevspecificmsg.h.

#define TSP_WILL_RECONNECT 0x80000000

This high bit gets set when TSP performs reconnection to configured
CTIManagers. Usually when TSP initialization with CTI fails due to temporary
failure reasons, such as CTI not initialized or request timeouts, TSP reconnects to
CTI. In those situations, TSP returns 0 devices for the initial
TSPI_ProviderEnumDevices request and enumerates the devices when
connection to CTI is reestablished. After enumeration, TSP informs the devices
to TAPI applications through LINE_CREATE / PHONE_CREATE messages.

#define TSP_SUCCESS 0x00000000

#define TSPERR_INTERNAL 0x00000001

This error indicates some Internal TSP error occurred. Collect the appropriate
TSP traces and send it to TSP developer support to further diagnose the issue.

#define TSPERR_CONNECT_TO_CTI_FAILED 0x00000002

This error indicates socket connection to CTIManager failed, either the service is
not up and running on the server or configured CTIManager IPAddress is invalid
or unreachable.
xxxi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
#define TSPERR_INIT_AUTHENTICATION_REQUEST_TIMEOUT
0x00000003

This error indicates username, password, and authentication request for CTI
access timed out. TSP reconnects in this situation.

#define TSPERR_INIT_CTI_NOT_INITIALIZED 0x00000004

This error indicates CTI is not yet completely initialized so that TSP can
reconnect within ReconnectInterval.

#define TSPERR_INIT_CTI_RESPONSE_TIMEOUT 0x00000005

This error indicates the request for initialization (providerOpen) timed out. User
needs to configure or verify the settings for ProviderOpenCompletedTimeout,
Synchronous message timeout, and CTI service parameter for Synchronous
message timeout so that CTI gets more time to initialize the devices/lines and TSP
can wait for some more time to get the successful response.

#define TSPERR_INIT_AUTHENTICATION_TEMPORARY_FAILED
0x00000006

This error indicates authentication failed temporarily. TSP reconnects to CTI
within ReconnectInterval and can have a successful connection later.

#define TSPERR_INIT_AUTHENTICATION_FAILED 0x00000007

This error indicates authentication failure. User needs to verify the Username or
Password. This is a permanent failure. If multiple CTIManagers are configured,
TSP attempts to connect to the remaining CTIManagers.

#define TSPERR_INIT_CTI_USE_NOT_ALLOWED_FOR_USER
0x00000008

This error indicates CTI use for this user is not enabled through
Cisco CallManager Administration. This is a permanent failure. If multiple
CTIManagers are configured, TSP attempts to connect to remaining
CTIManagers.
xxxii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
#define TSPERR_INIT_ILLEGAL_MESSAGE 0x00000009

This error indicates invalid message format (internal protocol error). TSP does not
reconnect.

#define TSPERR_INIT_INCOMPATIBLE_PROTOCOL_VERSION
0x0000000a

This error indicates internal protocol error - as the QBE version mismatch. The
TSP QBE protocol version does not match with the CTI protocol version, hence
the initialization can not proceed. TSP does not reconnect.

#define TSPERR_UNKNOWN 0x00000010

This error indicates some internal unknown error. Do not report because this is the
default case. Case is only when a new error is introduced in CTI-TSP QBE
protocol and is not already mapped to new TSP error. Collect the appropriate TSP
traces and send it to TSP developer support to further diagnose the issue.

New or Changed CiscoTSP 3.3 Entities
Several Cisco TAPI device structures, functions, and messages that have been
added or changed in this version enhance overall functionality. This table lists
each new or modified entity and its type.

Entity Type

LINEDEVCAPS TAPI Line Device Structure

linePark TAPI Line Function

lineUnpark TAPI Line Function
xxxiii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Changes From CiscoTSP 3.2 to CiscoTSP 3.3
This section describes two important changes in CiscoTSP version 3.3:

• A change in the way CiscoTSP behaves when the TSP user is deleted from
the Cisco CallManager Directory

• Changes that allow opening two lines on the same CTI port device

User Deletion From Directory

In previous releases, when the TSP user is removed from the Cisco CallManager
directory, the TSP would place all the lines and phones
OUTOFSERVICE/SUSPENDED indefinitely until the lines and phones are
closed.

In CiscoTSP 3.3, when the TSP user is removed, the TSP now closes all the lines
and phones and sends LINE_CLOSE/PHONE_CLOSE messages. After doing
this, the TSP removes all the lines and phones and sends
LINE_REMOVE/PHONE_REMOVE messages.

Opening Two Lines on One CTI Port Device

In previous releases, the CiscoTSP opened only one line at a time on CTI port
devices that are configured with multiple lines.

In CiscoTSP 3.3, the TSP allows the simultaneous opening of all lines on the same
CTI port device as long as the media parameters are matching for each lineOpen.

Media termination occurs two ways on CTI port devices:

• Cisco Wave Drivers—The Cisco Wave Drivers set up the media parameters.

• Media Termination Controlled by the Application—The application provides
the media parameters.

CiscoTSP 3.3 allows applications to open all lines on the same CTI port device at
the same time as long as all the lines are using the Cisco Wave Drivers or as long
as all the lines are using custom media termination with the same media
termination settings for each line.
xxxiv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
CiscoTSP 3.2 Enhancements
The following CiscoTSP enhancements apply for 3.2:

• Support for multiple languages in the CiscoTSP installation program and in
the CiscoTSP configuration dialogs

• Support for ATA186 devices

Changes From CiscoTSP 3.1 to CiscoTSP 3.2
Cisco TSP enhancements for 3.1 include CTI Manager and support for fault
tolerance and using Cisco CallManager Extension Mobility.

CiscoTSP 3.1 Enhancements
The following Cisco TSP enhancements apply for 3.1:

• CTI Manager and support for fault tolerance

• Support for Cisco CallManager Extension Mobility

• Support for Multiple CiscoTSP

• Support for swap hold and setup transfer with the lineDevSpecific function

• Support for lineForward

• Support to Reset the Original Called Party upon Redirect with the
lineDevSpecific function

• Support for VG248 devices
xxxv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
New and Changed Information
Changes From CiscoTSP 3.0 to CiscoTSP 3.1
This section describes two important changes in CiscoTSP version 3.1: a change
in the way CiscoTSP behaves when an application opens a line or phone and
changes in the LINE_CALLINFO message.

Line In Service or Out of Service

In CiscoTSP 3.0, by default a line is in service when opened. With cluster
abstraction (the CTI Manager) in CiscoTSP 3.1, after an application successfully
opens a line or phone, the line or phone may be out of service. Immediately after
opening the device, the application should check its status. If the device is out o
service, the application should wait for an in-service message before initiating a
TAPI request that results in Cisco CallManager interaction. If an application
initiates such a request while the device is out of service, CiscoTSP responds with
a resource unavailable message.

This change, from the behavior in CiscoTSP 3.0, will not be an issue for an
application if the application checks the line or phone status immediately after the
lineOpen or phoneOpen function call.

LINE_CALLINFO

• A change added complete support for the fields of the LINE_CALLINFO
message in CiscoTSP 3.1.

• The LINE_CALLINFO parameter dwCalledID correctly reflects the
OrigincalCalledParty information.
xxxvi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Organization
New or Changed CiscoTSP 3.1 Entities
Several Cisco TAPI device structures, functions, and messages that have been
added or changed in this version enhance overall functionality. This table lists
each new or modified entity and its type.

Organization

Entity Type

LINE_ADDRESSSTATE TAPI Line Message

LINE_REMOVE TAPI Line Message

LINEADDRESSCAPS TAPI Line Device Structure

LINEFORWARD TAPI Line Device Structure

LINEFORWARDLIST TAPI Line Device Structure

PHONE_REMOVE TAPI Phone Message

lineForward TAPI Line Function

Chapter Description

Chapter 1, “Overview” Outlines the key concepts for Cisco TAPI. Lists
all functions available in the Cisco TAPI
implementation for Cisco CallManager. Describes
changes in and enhancements to Cisco TSP.

Chapter 2, “Cisco TAPI
Implementation”

Describes the supported functions in the Cisco
implementation of the standard Microsoft TAPI
v2.1.

Chapter 3, “Cisco Device
Specific Extensions”

Describes the functions that comprise the Cisco
hardware-specific implementation classes.

Chapter 4, “Cisco TAPI
Examples”

Provides examples that illustrate how to use the
Cisco TAPI implementation.
xxxvii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Related Documentation
Related Documentation
For more information about TAPI specifications, creating an application to use
TAPI, or TAPI administration, see

• Microsoft TAPI 2.1 Features:
http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp

• Getting Started with Windows Telephony
http://www.microsoft.com/NTServer/commserv/deployment/planguides
/getstartedtele.asp

• Windows Telephony API (TAPI)
http://www.microsoft.com/NTServer/commserv/exec/overview
/tapiabout.asp

• Creating Next Generation Telephony Applications:
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch
/tapi21wp.asp

• The Microsoft Telephony Application Programming Interface (TAPI)
Programmer's Reference

• “For the Telephony API, Press 1; For Unimodem, Press 2; or Stay on the
Line” —A paper on TAPI by Hiroo Umeno a COMM and TAPI specialist at
Microsoft.

• “TAPI 2.1 Microsoft TAPI Client Management”

• “TAPI 2.1 Administration Tool”

Required Software
CiscoTSP requires the following software:

• Cisco CallManager version 4.0(1) on the Cisco CallManager server

• Microsoft Internet Explorer 4.01 or later
xxxviii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Supported Windows Platforms
Supported Windows Platforms
All Windows operating systems support Cisco TAPI. Depending on the type and
version of your operating system, you may need to install a service pack.

• Windows 2000

– Windows 2000 includes TAPI 2.1.

• Windows XP

– Windows XP includes TAPI 2.1.

• Windows Me

– Windows Me includes TAPI 2.1.

• Windows NT Server 4.0 or Windows NT Workstation 4.0

– Service Pack 5 (SP5) includes TAPI 2.1.

– SP5 is available via download from Microsoft.

• Windows 98

– Windows 98 includes TAPI 2.1.

• Windows 95

– Microsoft provides TAPI 2.1.

Note Check%SystemRoot%\system32 for these dynamically loaded library (.dll) files
and versions:
msvcrt.dll version: 6.00.8397.0
msvcp60.dll version: 6.00.8168.0
mfc42.dll version: 6.00.8447.0
xxxix
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Conventions
Conventions
This document uses the following conventions:

Notes use the following convention:

Note Means reader take note. Notes contain helpful suggestions or references to
material not covered in the publication.

Convention Description

boldface font Commands and keywords are in boldface.

italic font Arguments for which you supply values are in italics.

[] Elements in square brackets are optional.

{ x | y | z } Alternative keywords are grouped in braces and separated
by vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and
separated by vertical bars.

string An unquoted set of characters. Do not use quotation marks
around the string or the string will include the quotation
marks.

screen font Terminal sessions and information that the system displays
are in screen font.

boldface screen
font

Information you must enter is in boldface screen font.

italic screen font Arguments for which you supply values are in italic screen
font.

This pointer highlights an important line of text in
an example.

^ The symbol ^ represents the key labeled Control—for
example, the key combination ̂ D in a screen display means
hold down the Control key while you press the D key.

< > Nonprinting characters, such as passwords are in angle
brackets.
xl
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Preface
Obtaining Documentation
Obtaining Documentation
Cisco documentation and additional literature are available on Cisco.com. Cisco
also provides several ways to obtain technical assistance and other technical
resources. These sections explain how to obtain technical information from Cisco
Systems.

Cisco.com
You can access the most current Cisco documentation at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

You can access international Cisco websites at this URL:

http://www.cisco.com/public/countries_languages.shtml

Ordering Documentation
You can find instructions for ordering documentation at this URL:

http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm

You can order Cisco documentation in these ways:

• Registered Cisco.com users (Cisco direct customers) can order Cisco product
documentation from the Ordering tool:

http://www.cisco.com/en/US/partner/ordering/index.shtml

• Nonregistered Cisco.com users can order documentation through a local
account representative by calling Cisco Systems Corporate Headquarters
(California, USA) at 408 526-7208 or, elsewhere in North America, by
calling 800 553-NETS (6387).
xli
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

http://www.cisco.com/univercd/home/home.htm
http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm
http://www.cisco.com/en/US/partner/ordering/index.shtml

Preface
Documentation Feedback
Documentation Feedback
You can send comments about technical documentation to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front
cover of your document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance
For all customers, partners, resellers, and distributors who hold valid Cisco
service contracts, Cisco Technical Support provides 24-hour-a-day,
award-winning technical assistance. The Cisco Technical Support Website on
Cisco.com features extensive online support resources. In addition, Cisco
Technical Assistance Center (TAC) engineers provide telephone support. If you
do not hold a valid Cisco service contract, contact your reseller.

Cisco Technical Support Website
The Cisco Technical Support Website provides online documents and tools for
troubleshooting and resolving technical issues with Cisco products and
technologies. The website is available 24 hours a day, 365 days a year at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support Website requires a Cisco.com
user ID and password. If you have a valid service contract but do not have a user
ID or password, you can register at this URL:

http://tools.cisco.com/RPF/register/register.do
xlii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

http://www.cisco.com/techsupport
http://tools.cisco.com/RPF/register/register.do

Preface
Obtaining Technical Assistance
Submitting a Service Request
Using the online TAC Service Request Tool is the fastest way to open S3 and S4
service requests. (S3 and S4 service requests are those in which your network is
minimally impaired or for which you require product information.) After you
describe your situation, the TAC Service Request Tool automatically provides
recommended solutions. If your issue is not resolved using the recommended
resources, your service request will be assigned to a Cisco TAC engineer. The
TAC Service Request Tool is located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests or if you do not have Internet access, contact the
Cisco TAC by telephone. (S1 or S2 service requests are those in which your
production network is down or severely degraded.) Cisco TAC engineers are
assigned immediately to S1 and S2 service requests to help keep your business
operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553 2447

For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity
To ensure that all service requests are reported in a standard format, Cisco has
established severity definitions.

Severity 1 (S1)—Your network is “down,” or there is a critical impact to your
business operations. You and Cisco will commit all necessary resources around
the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or
significant aspects of your business operation are negatively affected by
inadequate performance of Cisco products. You and Cisco will commit full-time
resources during normal business hours to resolve the situation.
xliii
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

http://tools.cisco.com/RPF/register/register.do
http://www.cisco.com/techsupport/servicerequest
http://www.cisco.com/techsupport/contacts

Preface
Obtaining Additional Publications and Information
Severity 3 (S3)—Operational performance of your network is impaired, but most
business operations remain functional. You and Cisco will commit resources
during normal business hours to restore service to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product
capabilities, installation, or configuration. There is little or no effect on your
business operations.

Obtaining Additional Publications and Information
Information about Cisco products, technologies, and network solutions is
available from various online and printed sources.

• Cisco Marketplace provides a variety of Cisco books, reference guides, and
logo merchandise. Visit Cisco Marketplace, the company store, at this URL:

http://www.cisco.com/go/marketplace/

• The Cisco Product Catalog describes the networking products offered by
Cisco Systems, as well as ordering and customer support services. Access the
Cisco Product Catalog at this URL:

http://cisco.com/univercd/cc/td/doc/pcat/

• Cisco Press publishes a wide range of general networking, training and
certification titles. Both new and experienced users will benefit from these
publications. For current Cisco Press titles and other information, go to Cisco
Press at this URL:

http://www.ciscopress.com

• Packet magazine is the Cisco Systems technical user magazine for
maximizing Internet and networking investments. Each quarter, Packet
delivers coverage of the latest industry trends, technology breakthroughs, and
Cisco products and solutions, as well as network deployment and
troubleshooting tips, configuration examples, customer case studies,
certification and training information, and links to scores of in-depth online
resources. You can access Packet magazine at this URL:

http://www.cisco.com/packet

• iQ Magazine is the quarterly publication from Cisco Systems designed to
help growing companies learn how they can use technology to increase
revenue, streamline their business, and expand services. The publication
xliv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

http://www.cisco.com/go/marketplace/
http://cisco.com/univercd/cc/td/doc/pcat/
http://www.ciscopress.com
http://www.cisco.com/packet

Preface
Obtaining Additional Publications and Information
identifies the challenges facing these companies and the technologies to help
solve them, using real-world case studies and business strategies to help
readers make sound technology investment decisions. You can access iQ
Magazine at this URL:

http://www.cisco.com/go/iqmagazine

• Internet Protocol Journal is a quarterly journal published by Cisco Systems
for engineering professionals involved in designing, developing, and
operating public and private internets and intranets. You can access the
Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

• World-class networking training is available from Cisco. You can view
current offerings at this URL:

http://www.cisco.com/en/US/learning/index.html
xlv
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

http://www.cisco.com/go/iqmagazine
http://www.cisco.com/ipj
http://www.cisco.com/en/US/learning/index.html

Preface
Obtaining Additional Publications and Information
xlvi
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develo
OL-5436-01
C H A P T E R 1

Overview

This chapter outlines the key concepts that are involved in using Cisco TAPI and
lists all the functions that are available in the Cisco TAPI implementation for
Cisco CallManager Release 4.0(1):

• Architecture

• Call Control

• CTI Port

• CTI Route Point

• CTI Manager (Cluster Support)

• Supported Device Types

• Forwarding

• Extension Mobility Support

• Monitoring Call Park Directory Numbers

• Multiple CiscoTSP

• Compatibility

• XSI Object Pass Through
1-1
per Guide for Cisco CallManager 4.1(2)

Chapter 1 Overview
Architecture
Architecture
The Cisco TAPI service provider that is shipped with Cisco CallManager 4.1(1)
is TAPI version 2.1. Figure 1-1 shows how various Cisco components fit into the
Microsoft Windows NT telephony and wave architectures.

Figure 1-1 High-Level View of the Windows NT Telephony and Wave

Architectures with Cisco Components

32-bit Process

32-bit TAPI Application

Wave C-API

C-API

WinMM.DLL

AVAudio32.DLL
(User mode WAVE

Driver Interface)

TAPI C-API

TAPI32.DLL

32-bit TAPI Service Process

TAPISRV

C++ Wrapper

CiscoNTWave.DLL
(COM Object Server)

CiscoTSP

TSPI C-API

32-bit CTIManager Service Process

(Note: This process will reside
on a remote machine.)

CTI Manager

WinNT Kernel

AVAudio32.DLL
(Kernel mode WAVE Driver)

TCP/IP

33
32

0

1-2
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Call Control
Call Control
You can configure the Cisco TAPI Service Provider to provide either first- or
third-party call control.

You can also configure Cisco TSP to provide both first- and third-party call
control.

First-Party Call Control
In first-party call control, the application terminates the audio stream. Ordinarily,
this occurs using the Cisco wave driver. However, if you want the application to
control the audio stream instead of the wave driver, use the Cisco Device Specific
extensions.

Third-Party Call Control
In third-party call control, the control of an audio stream terminating device is not
“local” to the Cisco CallManager. In such cases, the controller might be the
physical IP phone on your desk or a group of IP phones for which your application
is responsible.

CTI Port
For first-party call control, a CTI port device must exist in the
Cisco CallManager. Because each port can only have one active audio stream at
a time, most configurations only need one line per port.

A CTI port device does not actually exist in the system until you run a TAPI
application and a line on the port device is opened requesting
LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE. Until the port is opened, anyone
calling the directory number that is associated with that CTI port device receives
a busy or reorder tone.
1-3
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
CTI Route Point
CTI Route Point
You can use Cisco TAPI to control CTI route points. CTI route points allow
Cisco TAPI applications to redirect incoming calls with an infinite queue depth.
This allows incoming calls to avoid busy signals.

CTI route point devices have an address capability flag of
LINEADDRCAPFLAGS_ROUTEPOINT. When your application opens a line of
this type, it can handle any incoming call by disconnecting, accepting, or
redirecting the call to some other directory number. The basis for redirection
decisions can be caller ID information, time of day, or other information that is
available to the program.

CTI Manager (Cluster Support)
The CTI Manager, along with the Cisco TSP, provide an abstraction of the
Cisco CallManager cluster that allows TAPI applications to access
Cisco CallManager resources and functionality without being aware of any
specific Cisco CallManager. The Cisco CallManager cluster abstraction also
enhances the failover capability of CTI Manager resources. A failover condition
occurs when a Cisco CallManager node fails, a CTI Manager fails, or a TAPI
application fails.

Figure 1-2 Cluster Support Architecture

TAPI application

Cisco TSP

CTI Manager
(primary)

CTI Manager
(secondary)

CallManagers
63

10
2

1-4
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
CTI Manager (Cluster Support)
Cisco CallManager Failure
When a Cisco CallManager node in a cluster fails, the CTI Manager recovers the
affected CTI ports and route points by reopening these devices on another Cisco
CallManager node. When the failure is first detected, Cisco TSP sends a
PHONE_STATE (PHONESTATE_SUSPEND) message to the TAPI application.

When the CTI port/route point is successfully reopened on another
Cisco CallManager, CiscoTSP sends a phone PHONE_STATE
(PHONESTATE_RESUME) message to the TAPI application. If no
Cisco CallManager is available, the CTI Manager waits until an appropriate
Cisco CallManager comes back in service and tries to open the device again. The
lines on the affected device also go out of service and in service with the
corresponding LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE)
and LINE_LINEDEVSTATE (LINEDEVSTATE_INSERVICE) events sent by
Cisco TSP to the TAPI application. If for some reason the device or lines cannot
be opened, even when all the Cisco CallManagers come back in service, the
devices or lines are closed, and CiscoTSP will send PHONE_CLOSE or
LINE_CLOSE message to TAPI application.

When a failed Cisco CallManager node comes back in service, CTI Manager
“re-homes” the affected CTI ports or route points back to their original
Cisco CallManager. The graceful re-homing process ensures that the re-homing
only starts when calls are no longer being processed or are active on the affected
device. For this reason, the re-homing process may not finish for a long time,
especially for route points, which can handle many simultaneous calls.

When a Cisco CallManager node fails, phones currently re-home to another
Cisco CallManager node in the same cluster. If a TAPI application has a phone
device opened and the phone goes through the re-homing process, CTI Manager
automatically recovers that device, and CiscoTSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message to the TAPI application. When the phone
successfully re-homes to another Cisco CallManager node, CiscoTSP sends a
PHONE_STATE (PHONESTATE_RESUME) message to the TAPI application.

The lines on the affected device also go out of service and in service and
Cisco TSP sends LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) messages to the TAPI application.
1-5
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
CTI Manager (Cluster Support)
Call Survivability
When a device or Cisco CallManager failure occurs, no call survivability exists;
however, media streams that are already connected between devices will survive.
Calls in the process of being set up or modified (transfer, conference, redirect)
simply get dropped.

CTI Manager Failure
When a primary CTI Manager fails, Cisco TSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message and a LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) message for every phone and line device
that the application opened. Cisco TSP then connects to a backup CTIManager.
When a connection to a backup CTI Manager is established and the device or line
successfully reopens, the Cisco TSP sends a PHONE_STATE
(PHONESTATE_RESUME) or LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) message to the TAPI application. If the
Cisco TSP is unsuccessful in opening the device or line for a CTI port or route
point, the Cisco TSP closes the device or line by sending the appropriate
PHONE_CLOSE or LINE_CLOSE message to the TAPI application.

If devices are added to or removed from the user while the CTI Manager is down,
Cisco TSP generates PHONE_CREATE/LINE_CREATE or
PHONE_REMOVE/LINE_REMOVE events, respectively, when connection to a
backup CTI Manager is established.

Cisco TAPI Application Failure
When a Cisco TAPI application fails, that is, the CTI Manager closes the
provider, calls at CTI ports and route points that have not yet been terminated get
redirected to the Call Forward On Failure (CFF) number that has been configured
for them.
1-6
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Supported Device Types
Supported Device Types
CiscoTSP supports the following device types:

• 30 SP+ (This device has spurious offhook problems, not recommended.)

• 12 SP+ (This device has spurious offhook problems, not recommended.)

• 12 SP (This device has spurious offhook problems, not recommended.)

• 7902

• 7905

• 7910

• 7912

• 7914

• 7935

• 7940

• 7960

• 7965

• 7970

• CTI Route Points

• CTI Ports

• VG248 Analog Devices

• ATA186 Analog Devices

Forwarding
CiscoTSP now provides added support for the lineForward() request to set and
clear ForwardAll information on a line. This will allow TAPI applications to set
the Call Forward All setting for a particular line device. Activating this feature
will allow users to set the call forwarding Unconditionally to a forward
destination.
1-7
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Extension Mobility Support
CiscoTSP sends LINE_ADDRESSSTATE messages when lineForward()
requests successfully complete. These events also get sent when call forward
indications are obtained from the CTI, indicating that a change in forward status
has been received from a third party, such as the Cisco CallManager
Administration or another application setting call forward all.

Extension Mobility Support
Extension Mobility, a Cisco CallManager feature, allows a user to log in and log
out of a phone. Cisco CallManager Extension Mobility loads a user Device
Profile (including line, speed dial numbers, and so on) onto the phone when the
user logs in.

Cisco TSP recognizes a user who is logged into a device as the TSPUser.

Using Cisco CallManager Administration pages, you can associate a list of
controlled devices with a user.

When the TSP user logs into the device, the lines that are listed in the user's
Extension Mobility profile are placed on the phone device, and lines previously
on the phone are removed. If the device is not in the controlled device list for the
TSPUser, the application receives a PHONE_CREATE or LINE_CREATE
message. If the device is in the controlled list, the application receives a
LINE_CREATE message for the added line and a LINE_REMOVE message for
the removed line.

When the user logs out, the original lines get restored. For a non-controlled
device, the application perceives a PHONE_REMOVE or LINE_REMOVE
message. For a controlled device, it perceives a LINE_CREATE message for an
added line and a LINE_REMOVE message for a removed line.

Directory Change Notification Handling
The Cisco TSP sends notification events when a device has been added to or
removed from the user's controlled device list in the directory. Cisco TSP sends
events when the user is deleted from the Cisco CallManager Administration
pages.

Cisco TSP sends a LINE_CREATE or PHONE_CREATE message when a device
is added to a users' control list.
1-8
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Monitoring Call Park Directory Numbers
It sends a LINE_REMOVE or PHONE_REMOVE message when a device is
removed from the user's controlled list or the device is removed from database.

When the Cisco CallManager system administrator deletes the current user,
Cisco TSP generates a LINE_CLOSE and PHONE_CLOSE message for each
open line and open phone. After doing this, it sends a LINE_REMOVE and
PHONE_REMOVE message for all lines and phones.

Note Cisco TSP generates PHONE_REMOVE/PHONE_CREATE messages only if
the application called the phoneInitialize function earlier.

Note Change notification is generated if the device is added to/removed from the user
by using Cisco CallManager Administration pages or Bulk Administration Tool
(BAT). If you program against the LDAP directory, change notification does not
generate.

Monitoring Call Park Directory Numbers
The CiscoTSP supports monitoring calls on lines that represent
Cisco CallManager Call Park Directory Numbers (Call Park DNs). The CiscoTSP
uses a device-specific extension in the LINEDEVCAPS structure that allows
TAPI applications to differentiate Call Park DN lines from other lines. If an
application opens a Call Park DN line, all calls that are parked to the Call Park
DN get reported to the application. The application cannot perform any call
control functions on any calls at a Call Park DN.

To open Call Park DN lines, you must check the Monitor Call Park DNs check
box in the Cisco CallManager User Administration for the TSP user. Otherwise,
the application will not perceive any of the Call Park DN lines upon initialization.

Multiple CiscoTSP
In the Cisco TAPI solution, the TAPI application and the CiscoTSP get installed
on the same machine. The Cisco TAPI application and the CiscoTSP do not
directly interface with each other. A layer written by Microsoft sits between the
1-9
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Multiple CiscoTSP
TAPI application and the CiscoTSP. This layer, known as TAPISRV, allows the
installation of multiple TSPs on the same machine, and it hides that fact from the
Cisco TAPI application. The only difference to the TAPI application is that it is
now informed that there are more lines that it can control.

Consider an example. Assume that CiscoTSP1 exposes 100 lines, and CiscoTSP2
exposes 100 lines. In the single CiscoTSP architecture where CiscoTSP1 is the
only CiscoTSP that is installed, CiscoTSP1 would tell TAPISRV that it supports
100 lines, and TAPISRV would tell the application that it can control 100 lines.
In the multiple CiscoTSP architecture, where both CiscoTSPs are installed, this
means that CiscoTSP1 would tell TAPISRV that it supports 100 lines, and
CiscoTSP2 would tell TAPISRV that it supports 100 lines. TAPISRV would add
the lines and inform the application that it now supports 200 lines. The application
communicates with TAPISRV, and TAPISRV takes care of communicating with
the correct CiscoTSP.

Ensure that each CiscoTSP is configured with a different username and password
that you administer in the Cisco CallManager Directory. Configure each user in
the Directory so devices that are associated with each user do not overlap. Each
CiscoTSP in the multiple CiscoTSP system does not communicate with each
other. Each Cisco TSP in the multiple CiscoTSP system creates a separate CTI
connection to the CTI Manager.

Multiple CiscoTSP helps in scalability and higher performance.

The following figure shows how multiple CiscoTSPs connect to a single CTI
manager and use the functionality of multiple Cisco CallManagers.
1-10
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
Compatibility
Figure 1-3 CTI Manager

Compatibility
The Cisco TAPI Service Provider serves as a TAPI 2.1 service provider.

When developing an application, be sure to use only functions that the
Cisco TAPI Service Provider supports. For example, transfer is supported, but fax
detection is not. If an application requires a media or bearer mode that is not
supported, it will not work as expected.

TAPI application

001
002 003

004Cisco TSP

CTI Manager

CallManagers 63
10

3

1-11
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 1 Overview
XSI Object Pass Through
XSI Object Pass Through
XSI-enabled IP phones allow applications to directly communicate with the
phone and access XSI features, such as manipulate display, get user input, play
tone, and so on. In order to allow TAPI applications access to the XSI capabilities
without having to set up and maintain an independent connection directly to the
phone, TAPI provides the ability to send the device data through the CTI
interface. This feature is exposed as a CiscoTSP device-specific extension.

Only PhoneDevSpecificDataPassthrough request is supported for the IP phone
devices.
1-12
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develo
OL-5436-01
C H A P T E R 2

Cisco TAPI Implementation

The Cisco TAPI implementation comprises a set of classes that expose the
functionality of Cisco IP Telephony Solutions. This API allows developers to
create customized IP Telephony applications for Cisco CallManager without
specific knowledge of the communication protocols between the
Cisco CallManager and the service provider. For example, a developer could
create a TAPI application that communicates with an external voice messaging
system.

This chapter outlines the TAPI 2.1 functions, events, and messages that the
Cisco TAPI Service Provider supports. The Cisco TAPI implementation contains
functions in the following areas:

• TAPI Line Functions

• TAPI Line Messages

• TAPI Line Structures

• TAPI Phone Functions

• TAPI Phone Messages

• TAPI Phone Structures

• Wave
2-1
per Guide for Cisco CallManager 4.1(2)

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
TAPI Line Functions
The number of TAPI devices that are configured in the Cisco CallManager
determines the number of available lines. To terminate an audio stream by using
first-party control, you must first install the Cisco wave device driver.

Table 2-1 TAPI Line Functions

TAPI Line Functions

lineAccept

lineAddProvider

lineAddToConference

lineAnswer

lineBlindTransfer

lineCallbackFunc

lineClose

lineCompleteTransfer

lineConfigProvider

lineDeallocateCall

lineDevSpecific

lineDial

lineDrop

lineForward

lineGenerateDigits

lineGenerateTone

lineGetAddressCaps

lineGetAddressID

lineGetAddressStatus

lineGetCallInfo

lineGetCallStatus

lineGetConfRelatedCalls
2-2
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetDevCaps

lineGetID

lineGetLineDevStatus

lineGetMessage

lineGetNewCalls

lineGetNumRings

lineGetProviderList

lineGetRequest

lineGetStatusMessages

lineGetTranslateCaps

lineHandoff

lineHold

lineInitialize

lineInitializeEx

lineMakeCall

lineMonitorDigits

lineMonitorTones

lineNegotiateAPIVersion

lineNegotiateExtVersion

lineOpen

linePark

linePrepareAddToConference

lineRedirect

lineRegisterRequestRecipient

lineRemoveProvider

lineSetAppPriority

lineSetCallPrivilege

Table 2-1 TAPI Line Functions (continued)

TAPI Line Functions
2-3
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineAccept

Description

The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be accepted. The application must be an owner of the
call. Call state of hCall must be offering.

lineSetNumRings

lineSetStatusMessages

lineSetTollList

lineSetupConference

lineSetupTransfer

lineShutdown

lineTranslateAddress

lineTranslateDialog

lineUnhold

lineUnpark

Table 2-1 TAPI Line Functions (continued)

TAPI Line Functions
2-4
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the
remote party as part of the call accept. Leave this pointer NULL if no
user-user information is to be sent. User-user information only gets sent if
supported by the underlying network. The protocol discriminator member for
the user-user information, if required, should appear as the first byte of the
buffer that is pointed to by lpsUserUserInfo and must be accounted for in
dwSize.

Note The Cisco TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If
lpsUserUserInfo is NULL, no user-user information gets sent to the calling
party, and dwSize is ignored.

lineAddProvider

Description

The lineAddProvider function installs a new telephony service provider into the
telephony system.

Function Details

LONG WINAPI lineAddProvider(
 LPCSTR lpszProviderFilename,
 HWND hwndOwner,
 LPDWORD lpdwPermanentProviderID
);

Parameters

lpszProviderFilename

A pointer to a null-terminated string that contains the path of the service
provider to be added.
2-5
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
hwndOwner

A handle to a window in which any dialog boxes that need to be displayed as
part of the installation process (for example, by the service provider's
TSPI_providerInstall function) would be attached. Can be NULL to indicate
that any window created during the function should have no owner window.

lpdwPermanentProviderID

A pointer to a DWORD-sized memory location into which TAPI writes the
permanent provider identifier of the newly installed service provider.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM,
LINEERR_INVALPARAM, LINEERR_NOMULTIPLEINSTANCE,
LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED.

lineAddToConference

Description

This function takes the consult call that is specified by hConsultCall and adds it
to the conference call that is specified by hConfCall.

Function Details

LONG lineAddToConference(
 HCALL hConfCall,
 HCALL hConsultCall
);
2-6
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hConfCall

A pointer to the conference call handle. The state of the conference call must
be OnHoldPendingConference or OnHold.

hConsultCall

A pointer to the consult call that will be added to the conference call. The
application must be the owner of this call, and it cannot be a member of
another conference call. The allowed states of the consult call comprise
connected, onHold, proceeding, or ringback

lineAnswer

Description

The lineAnswer function answers the specified offering call.

Note CallProcessing requires previous calls on the device to be in connected call state
before answering further calls on the same device. If calls are answered without
checking for the call state of previous calls on the same device, then CiscoTSP
might return a successful answer response but the call will not go to connected
state and needs to be answered again.

Function Details

LONG lineAnswer(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall
2-7
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
A handle to the call to be answered. The application must be an owner of this
call. The call state of hCall must be offering or accepted.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the
remote party at the time the call is answered. You can leave this pointer NULL
if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network.
The protocol discriminator field for the user-user information, if required,
should be the first byte of the buffer that is pointed to by lpsUserUserInfo and
must be accounted for in dwSize.

Note The Cisco TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If
lpsUserUserInfo is NULL, no user-user information gets sent to the calling
party, and dwSize is ignored.

lineBlindTransfer

Description

The lineBlindTransfer function performs a blind or single-step transfer of the
specified call to the specified destination address.

Note The lineBlindTransfer function that is implemented until CiscoTSP 3.3 does not
comply with the TAPI specification. This function actually gets implemented as a
consultation transfer and not a single-step transfer. From CiscoTSP 4.0, the
lineBlindTransfer complies with the TAPI specs wherein the transfer is a
single-step transfer.

If the application tries to blind transfer a call to an address that requires a FAC,
CMC, or both, then the lineBlindTransfer function will return an error. If a FAC
is required, the TSP will return the error LINEERR_FACREQUIRED. If a CMC
2-8
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
is required, the TSP will return the error LINEERR_CMCREQUIRED. If both a
FAC and a CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to blind
transfer a call to an address that requires a FAC, CMC, or both, should use the
lineDevSpecific - BlindTransferFACCMC function.

Function Details

LONG lineBlindTransfer(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of
this call. The call state of hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string that identifies the location to which
the call is to be transferred. The destination address uses the standard dial
number format.

dwCountryCode

The country code of the destination. The implementation uses this parameter
to select the call progress protocols for the destination address. If a value of
0 is specified, the defined default call-progress protocol is used.

lineCallbackFunc

Description

The lineCallbackFunc function provides a placeholder for the
application-supplied function name.
2-9
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

VOID FAR PASCAL lineCallbackFunc(
 DWORD hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters

hDevice

A handle to either a line device or a call that is associated with the callback.
The context provided by dwMsg determines thee nature of this handle (line
handle or call handle). Applications must use the DWORD type for this
parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed back to the application in the callback.
TAPI does not interpret DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For information about parameter values that are passed to this function, see “TAPI
Line Functions.”
2-10
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineClose

Description

The lineClose function closes the specified open line device.

Function Details

LONG lineClose(
HLINE hLine

);

Parameter

hLine

A handle to the open line device to be closed. After the line has been
successfully closed, this handle is no longer valid.

lineCompleteTransfer

Description

The lineCompleteTransfer function completes the transfer of the specified call to
the party that is connected in the consultation call.

Function Details

LONG lineCompleteTransfer(
HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode

);
2-11
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to the call to be transferred. The application must be an owner of
this call. The call state of hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the
transfer. The application must be an owner of this call. The call state of
hConsultCall must be connected, ringback, busy, or proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If
dwTransferMode is LINETRANSFERMODE_CONFERENCE, the newly
created conference call is returned in lphConfCall and the application
becomes the sole owner of the conference call. Otherwise, this parameter gets
ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter
uses the following LINETRANSFERMODE_ constant:

– LINETRANSFERMODE_TRANSFER - Resolve the initiated transfer
by transferring the initial call to the consultation call.

– LINETRANSFERMODE_CONFERENCE - The transfer gets resolved
by establishing a three-way conference between the application, the party
connected to the initial call, and the party connected to the consultation
call. Selecting this option creates a conference call.

lineConfigProvider

Description

The lineConfigProvider function causes a service provider to display its
configuration dialog box. This basically provides a straight pass-through to
TSPI_providerConfig.
2-12
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG WINAPI lineConfigProvider(
 HWND hwndOwner,
 DWORD dwPermanentProviderID
);

Parameters

hwndOwner

A handle to a window to which the configuration dialog box (displayed by
TSPI_providerConfig) is attached. This parameter can be NULL to indicate
that any window that is created during the function should have no owner
window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM,
LINEERR_INVALPARAM, LINEERR_OPERATIONFAILED.

lineDeallocateCall

Description

The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall(
HCALL hCall

);
2-13
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameter

hCall

The call handle to be deallocated. An application with monitoring privileges
for a call can always deallocate its handle for that call. An application with
owner privilege for a call can deallocate its handle unless it is the sole owner
of the call and the call is not in the idle state. The call handle is no longer valid
after it has been deallocated.

lineDevSpecific

Description

The lineDevSpecific function enables service providers to provide access to
features that other TAPI functions do not offer. The extensions are device specific,
and taking advantage of these extensions requires the application to be fully aware
of them.

When used with the Cisco TSP, lineDevSpecific can be used to

• Enable the message waiting lamp for a particular line.

• Handle the audio stream (instead of using the provided Cisco wave driver).

• Turn On or Off the reporting of Media Streaming messages for a particular
line.

• Register a CTI port or route point for dynamic media termination.

• Set the IP address and the UDP port of a call at a CTI port or route point with
dynamic media termination.

• Redirect a Call and Reset the OriginalCalledID of the call to the party that is
the destination of the redirect.

• Redirect a call and set the OriginalCalledID of the call to any party.

• Join two or more calls into one conference call.

• Redirect a Call to a destination that requires a FAC, CMC, or both.

• Blind Transfer a Call to a destination that requires a FAC, CMC, or both.

• Open a CTI Port in Third Party Mode.
2-14
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Note In CiscoTSP Releases 4.0 and later, the TSP no longer supports the ability to
perform a SwapHold/SetupTransfer on two calls on a line in the CONNECTED
and the ONHOLD call states so that these calls can be transferred using
lineCompleteTransfer. CiscoTSP Releases 4.0 and later support the ability to
transfer these calls using the lineCompleteTransfer function without having to
perform the SwapHold/SetupTransfer beforehand.

Function Details

LONG lineDevSpecific(
HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize

);

Parameters

hLine

A handle to a line device. This parameter is required.

dwAddressID

An address identifier on the given line device.

hCall

A handle to a call. Although this parameter is optional, it is specified, the call
that it represents must belong to the hLine line device. The call state of hCall
is device specific.

lpParams

A pointer to a memory area that is used to hold a parameter block. The format
of this parameter block specifies device specific, and TAPI passes its contents
to or from the service provider.

dwSize

The size in bytes of the parameter block area.
2-15
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineDial

Description

The lineDial function dials the specified number on the specified call.

This function can be used by the application to enter a FAC or CMC. The FAC or
CMC can be entered one digit at a time or multiple digits at a time. The
application may also enter both the FAC and CMC if required in one lineDial()
request as long as the FAC and CMC are separated by a “#” character. If sending
both a FAC and CMC in one lineDial() request, it is recommended to terminate
the lpszDestAddress with a “#” character in order to avoid waiting for the T.302
interdigit timeout.

This function cannot be used to enter a dial string along with a FAC and/or a
CMC. The FAC and/or CMC must be entered in a separate lineDial request.

Function Details

LONG lineDial(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call on which a number is to be dialed. The application must
be an owner of the call. The call state of hCall can be any state except idle
and disconnected.

lpszDestAddress

The destination to be dialed by using the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this code to
select the call progress protocols for the destination address. If a value of 0 is
specified, the default call progress protocol is used.
2-16
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineDrop

Description

The lineDrop function drops or disconnects the specified call. The application can
specify user-user information to be transmitted as part of the call disconnect.

Function Details

LONG lineDrop(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be dropped. The application must be an owner of the
call. The call state of hCall can be any state except idle.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the
remote party as part of the call disconnect. This pointer can be left NULL if
no user-user information is to be sent. User-user information only gets sent if
supported by the underlying network. The protocol discriminator field for the
user-user information, if required, should appear as the first byte of the buffer
that is pointed to by lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If
lpsUserUserInfo is NULL, no user-user information gets sent to the calling
party, and dwSize is ignored.
2-17
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineForward

Description

The lineForward function forwards calls that are destined for the specified address
on the specified line, according to the specified forwarding instructions. When an
originating address (dwAddressID) is forwarded, the switch deflects the specified
incoming calls for that address to the other number. This function provides a
combination of forward all feature. This API allows calls to be forwarded
unconditionally to a forwarded destination.

This function can also cancel forwarding that currently is in effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI
fires LINEADDRESSSTATE events that indicate the change in the line forward
status.

Change forward destination with a call to lineForward without canceling the
current forwarding set on that line.

Note lineForward implementation of CiscoTSP allows setting up only one type for
forward as dwForwardMode = UNCOND. The lpLineForwardList data structure
accepts LINEFORWARD entry with dwForwardMode = UNCOND.

Function Details

LONG lineForward(
 HLINE hLine,
 DWORD bAllAddresses,
 DWORD dwAddressID,
 LPLINEFORWARDLIST const lpForwardList,
 DWORD dwNumRingsNoAnswer,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLine

A handle to the line device.
2-18
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
bAllAddresses

Specifies whether all originating addresses on the line or just the one that is
specified are to be forwarded. If TRUE, all addresses on the line get
forwarded, and dwAddressID is ignored; if FALSE, only the address that is
specified as dwAddressID gets forwarded.

dwAddressID

The address of the specified line whose incoming calls are to be forwarded.
This parameter gets ignored if bAllAddresses is TRUE.

Note If bAllAddresses is FALSE, dwAddressID must be 0.

lpForwardList

A pointer to a variably sized data structure that describes the specific
forwarding instructions of type LINEFORWARDLIST.

Note To cancel the forwarding that currently is in effect, ensure lpForwardList
Parameter is set to NULL.

dwNumRingsNoAnswer

The number of rings before a call is considered a "no answer." If
dwNumRingsNoAnswer is out of range, the actual value gets set to the
nearest value in the allowable range.

Note This parameter does not get used because this version of CiscoTSP does not
support call forward no answer.

lphConsultCall

A pointer to an HCALL location. In some telephony environments, this
location is loaded with a handle to a consultation call that is used to consult
the party that is being forwarded to, and the application becomes the initial
sole owner of this call. This pointer must be valid even in environments where
call forwarding does not require a consultation call. This handle is set to
NULL if no consultation call is created.
2-19
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Note This parameter also gets ignored because we do not create a consult call for
setting up lineForward.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer gets
ignored unless lineForward requires the establishment of a call to the
forwarding destination (and lphConsultCall is returned; in which case,
lpCallParams is optional). If NULL, default call parameters get used.
Otherwise, the specified call parameters get used for establishing
hConsultCall.

Note This parameter must be NULL for this version of CiscoTSP because we do not
create a consult call.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALLINEHANDLE, LINEERR_NOMEM,
LINEERR_INVALADDRESSID, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED,
LINEERR_INVALCOUNTRYCODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPARAM, LINEERR_UNINITIALIZED.

Note For lpForwardList[0].dwForwardMode other than UNCOND, lineForward
returns LINEERR_OPERATIONUNAVAIL. For lpForwardList.dwNumEntries
more than 1, lineForward returns LINEERR_INVALPARAM
2-20
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGenerateDigits

Description

The lineGenerateDigits function initiates the generation of the specified digits on
the specified call as out-of-band tones by using the specified signaling mode.

Note The Cisco TSP supports neither invoking this function with a NULL value for
lpszDigits to abort a digit generation that is currently in progress nor invoking
lineGenerateDigits while digit generation is in progress. Cisco IP Phones pass
DTMF digits out of band. This means that the tone does not get injected into the
audio stream (in-band) but is sent as a message in the control stream. The phone
on the far end then injects the tone into the audio stream to present it to the user.
CTI port devices do not inject DTMF tones. Also, be aware that some gateways
will not inject DTMF tones into the audio stream on the way out of the LAN.

Function Details

LONG lineGenerateDigits(
 HCALL hCall,
 DWORD dwDigitMode,
 LPCSTR lpszDigits,
 DWORD dwDuration
);

Parameters

hCall

A handle to the call. The application must be an owner of the call. Call state
of hCall can be any state.

dwDigitMode

The format to be used for signaling these digits. The dwDigitMode can have
only a single flag set. This parameter uses the following LINEDIGITMODE_
constant:

– LINEDIGITMODE_DTMF - Uses DTMF tones for digit signaling. Valid
digits for DTMF mode include ‘0’ - ‘9’, ‘*’, ‘#’.
2-21
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpszDigits

Valid characters for DTMF mode in the Cisco TSP include ‘0’ through ‘9’,
‘*’, and ‘#’.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco TSP does not support dwDuration.

lineGenerateTone

Description

The lineGenerateTone function generates the specified tone over the specified
call.

Note The Cisco TSP supports neither invoking this function with a 0 value for
dwToneMode to abort a tone generation that is currently in progress nor invoking
lineGenerateTone while tone generation is in progress. Cisco IP phones pass
tones out of band. This means that the tone does not get injected into the audio
stream (in-band) but is sent as a message in the control stream. The phone on the
far end then injects the tone into the audio stream to present it to the user. Also,
be aware that some gateways will not inject tones into the audio stream on the way
out of the LAN.

Function Details

LONG lineGenerateTone(
 HCALL hCall,
 DWORD dwToneMode,
 DWORD dwDuration,
 DWORD dwNumTones,
 LPLINEGENERATETONE const lpTones
);
2-22
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to the call on which a tone is to be generated. The application must
be an owner of the call. The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom. A
custom tone comprises a set of arbitrary frequencies. A small number of
standard tones are predefined. The duration of the tone gets specified with
dwDuration for both standard and custom tones. The dwToneMode parameter
can have only one bit set. If no bits are set (the value 0 is passed), tone
generation gets canceled. This parameter uses the following
LINETONEMODE_ constant:

– LINETONEMODE_BEEP - The tone is a beep, as used to announce the
beginning of a recording. The service provider defines the exact beep
tone.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco TSP does not support dwDuration.

dwNumTones

The number of entries in the lpTones array. This parameter gets ignored if
dwToneMode is not equal to CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the components
of the tone. This parameter gets ignored for non-custom tones. If lpTones is
a multifrequency tone, the various tones play simultaneously.
2-23
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetAddressCaps

Description

The lineGetAddressCaps function queries the specified address on the specified
line device to determine its telephony capabilities.
2-24
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG lineGetAddressCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEADDRESSCAPS lpAddressCaps
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device that contains the address to be queried. Only one address gets
supported per line, so dwAddressID must be zero.

dwAddressID

The address on the given line device whose capabilities are to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the Telephony
API to be used. The high-order word contains the major version number; the
low-order word contains the minor version number.

dwExtVersion

The version number of the extensions to be used. This number can be left zero
if no device-specific extensions are to be used. Otherwise, the high-order
word contains the major version number and the low-order word contains the
minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon
successful completion of the request, this structure gets filled with address
capabilities information. Prior to calling lineGetAddressCaps, the application
should set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.
2-25
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetAddressID

Description

The lineGetAddressID function returns the address identifier that is associated
with an address in a different format on the specified line.

Function Details

LONG lineGetAddressID(
 HLINE hLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCSTR lpsAddress,
 DWORD dwSize
);

Parameters

hLine

A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location that returns the address
identifier.

dwAddressMode

The address mode of the address that is contained in lpsAddress. The
dwAddressMode parameter can have only a single flag set. This parameter
uses the following LINEADDRESSMODE_ constant:

– LINEADDRESSMODE_DIALABLEADDR - The address is specified
by its dialable address. The lpsAddress parameter represents the dialable
address or canonical address format.
2-26
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpsAddress

A pointer to a data structure that holds the address that is assigned to the
specified line device. dwAddressMode determines the format of the address.
Because the only valid value is LINEADDRESSMODE_DIALABLEADDR,
lpsAddress uses the common dialable number format and is
NULL-terminated.

dwSize

The size of the address that is contained in lpsAddress.

lineGetAddressStatus

Description

The lineGetAddressStatus function allows an application to query the specified
address for its current status.

Function Details

LONG lineGetAddressStatus(
 HLINE hLine,
 DWORD dwAddressID,
 LPLINEADDRESSSTATUS lpAddressStatus
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the given open line device. This is the address to be queried.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS.
Prior to calling lineGetAddressStatus, the application should set the
dwTotalSize member of this structure to indicate the amount of memory that
is available to TAPI for returning information.
2-27
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetCallInfo

Description

The lineGetCallInfo function enables an application to obtain fixed information
about the specified call.

Function Details

LONG lineGetCallInfo(
 HCALL hCall,
 LPLINECALLINFO lpCallInfo
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon
successful completion of the request, call-related information fills this
structure. Prior to calling lineGetCallInfo, the application should set the
dwTotalSize member of this structure to indicate the amount of memory that
is available to TAPI for returning information.

lineGetCallStatus

Description

The lineGetCallStatus function returns the current status of the specified call.
2-28
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG lineGetCallStatus(
 HCALL hCall,
 LPLINECALLSTATUS lpCallStatus
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS.
Upon successful completion of the request, call status information fills this
structure. Prior to calling lineGetCallStatus, the application should set the
dwTotalSize member of this structure to indicate the amount of memory
available to TAPI for returning information.

lineGetConfRelatedCalls

Description

The lineGetConfRelatedCalls function returns a list of call handles that are part
of the same conference call as the specified call. The specified call represents
either a conference call or a participant call in a conference call. New handles get
generated for those calls for which the application does not already have handles,
and the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls(
 HCALL hCall,
 LPLINECALLLIST lpCallList
);
2-29
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to a call. This represents either a conference call or a participant call
in a conference call. For a conference parent call, the call state of hCall can
be any state. For a conference participant call, it must be in the conferenced
state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon
successful completion of the request, call handles to all calls in the
conference call return in this structure. The first call in the list represents the
conference call, the other calls represent the participant calls. The application
receives monitor privilege to those calls for which it does not already have
handles; the privileges to calls in the list for which the application already has
handles remains unchanged. Prior to calling lineGetConfRelatedCalls, the
application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_NOCONFERENCE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

lineGetDevCaps

Description

The lineGetDevCaps function queries a specified line device to determine its
telephony capabilities. The returned information applies for all addresses on the
line device.
2-30
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG lineGetDevCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEDEVCAPS lpLineDevCaps
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the Telephony
API to be used. The high-order word contains the major version number; the
low-order word contains the minor version number.

dwExtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions
to be used. It can be left zero if no device-specific extensions are to be used.
Otherwise, the high-order word contains the major version number; the
low-order word contains the minor version number.

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon
successful completion of the request, this structure gets filled with line device
capabilities information. Prior to calling lineGetDevCaps, the application
should set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.
2-31
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetID

Description

The lineGetID function returns a device identifier for the specified device class
that is associated with the selected line, address, or call.

Function Details

LONG lineGetID(
 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device.

hCall

A handle to a call.

dwSelect

Specifies whether the requested device identifier is associated with the line,
address or a single call. The dwSelect parameter can only have a single flag
set. This parameter uses the following LINECALLSELECT_ constants:

– LINECALLSELECT_LINE Selects the specified line device. The hLine
parameter must be a valid line handle; hCall and dwAddressID are
ignored.
2-32
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
– LINECALLSELECT_ADDRESS Selects the specified address on the
line. Both hLine and dwAddressID must be valid; hCall is ignored.

– LINECALLSELECT_CALL Selects the specified call. hCall must be
valid; hLine and dwAddressID are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device
identifier is returned. Upon successful completion of the request, the device
identifier fills this location. The format of the returned information depends
on the method the device class API uses for naming devices. Prior to calling
lineGetID, the application should set the dwTotalSize member of this
structure to indicate the amount of memory that is available to TAPI for
returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class
of the device whose identifier is requested. Device classes include wave/in,
wave/out and tapi/line.

Valid device class strings are those that are used in the SYSTEM.INI section
to identify device classes.

lineGetLineDevStatus

Description

The lineGetLineDevStatus function enables an application to query the specified
open line device for its current status.

Function Details

LONG lineGetLineDevStatus(
 HLINE hLine,
 LPLINEDEVSTATUS lpLineDevStatus
);
2-33
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hLine

A handle to the open line device to be queried.

lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon
successful completion of the request, the device status of the line fills this
structure. Prior to calling lineGetLineDevStatus, the application should set
the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetMessage

Description

The lineGetMessage function returns the next TAPI message that is queued for
delivery to an application that is using the Event Handle notification mechanism
(see lineInitializeEx for further details).

Function Details

LONG WINAPI lineGetMessage(
 HLINEAPP hLineApp,
 LPLINEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters

hLineApp

The handle returned by lineInitializeEx. The application must have set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions
member of the LINEINITIALIZEEXPARAMS structure.
2-34
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this
function, the structure contains the next message that had been queued for
delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval
elapses, even if no message can be returned. If dwTimeout is zero, the
function checks for a queued message and returns immediately. If dwTimeout
is INFINITE, the function's time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_NOMEM.

lineGetNewCalls

Description

The lineGetNewCalls function returns call handles to calls on a specified line or
address for which the application currently does not have handles. The application
receives monitor privilege for these calls.

An application can use lineGetNewCalls to obtain handles to calls for which it
currently has no handles. The application can select the calls for which handles
are to be returned by basing this selection on scope (calls on a specified line, or
calls on a specified address). For example, an application can request call handles
to all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(
 HLINE hLine,
 DWORD dwAddressID,
2-35
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
 DWORD dwSelect,
 LPLINECALLLIST lpCallList
);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier permanently
associates with an address; the identifier remains constant across operating
system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only
one of the LINECALLSELECT_ Constants.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon
successful completion of the request, call handles to all selected calls get
returned in this structure. Prior to calling lineGetNewCalls, the application
should set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSELECT, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALLINEHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.
2-36
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetNumRings

Description

The lineGetNumRings function determines the number of rings that an incoming
call on the given address should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 LPDWORD lpdwNumRings
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates
with an address; the identifier remains constant across operating system
upgrades.

lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings
requests.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED,
LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.
2-37
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetProviderList

Description

The lineGetProviderList function returns a list of service providers that are
currently installed in the telephony system.

Function Details

LONG WINAPI lineGetProviderList(
 DWORD dwAPIVersion,
 LPLINEPROVIDERLIST lpProviderList
);

Parameters

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the
value that lineNegotiateAPIVersion negotiates on some particular line
device).

lpProviderList

A pointer to a memory location where TAPI can return a
LINEPROVIDERLIST structure. Prior to calling lineGetProviderList, the
application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM,
LINEERR_INIFILECORRUPT, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL.
2-38
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineGetRequest

Description

The lineGetRequest function retrieves the next by-proxy request for the specified
request mode.

Function Details

LONG WINAPI lineGetRequest(
 HLINEAPP hLineApp,
 DWORD dwRequestMode,
 LPVOID lpRequestBuffer
);

Parameters

hLineApp

 The application's usage handle for the line portion of TAPI.

dwRequestMode

The type of request that is to be obtained. dwRequestMode can have only one
bit set. This parameter uses one and only one of the
LINEREQUESTMODE_ Constants.

lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be
placed. The size of the buffer and the interpretation of the information that is
placed in the buffer depends on the request mode. The application-allocated
buffer provides sufficient size to hold the request. If dwRequestMode is
LINEREQUESTMODE_MAKECALL, interpret the content of the request
buffer by using the LINEREQMAKECALL structure. If dwRequestMode is
LINEREQUESTMODE_MEDIACALL, interpret the content of the request
buffer by using the LINEREQMEDIACALL structure.
2-39
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALAPPHANDLE, LINEERR_NOTREGISTERED,
LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED,
LINEERR_INVALREQUESTMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED, LINEERR_NOREQUEST.

lineGetStatusMessages

Description

The lineGetStatusMessages function enables an application to query which
notification messages the application is set up to receive for events that relate to
status changes for the specified line or any of its addresses.

Function Details

LONG WINAPI lineGetStatusMessages(
 HLINE hLine,
 LPDWORD lpdwLineStates,
 LPDWORD lpdwAddressStates
);

Parameters

hLine

Handle to the line device.

lpdwLineStates

A bit array that identifies for which line device status changes a message is
to be sent to the application. If a flag is TRUE, that message is enabled; if
FALSE, it is disabled. This parameter uses one or more of the
LINEDEVSTATE_ Constants.
2-40
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpdwAddressStates

A bit array that identifies for which address status changes a message is to be
sent to the application. If a flag is TRUE, that message is enabled; if FALSE,
disabled. This parameter uses one or more of the LINEADDRESSSTATE_
Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

lineGetTranslateCaps

Description

The lineGetTranslateCaps function returns address translation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps(
 HLINEAPP hLineApp,
 DWORD dwAPIVersion,
 LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters

hLineApp

The application handle returned by lineInitializeEx. If an application has not
yet called the lineInitializeEx function, it can set the hLineApp parameter to
NULL.
2-41
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the
value that lineNegotiateAPIVersion negotiates on some particular line
device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is
loaded. Prior to calling lineGetTranslateCaps, the application should set the
dwTotalSize member of this structure to indicate the amount of memory that
is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM,
LINEERR_INIFILECORRUPT, LINEERR_OPERATIONFAILED,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL,
LINEERR_NODRIVER.

lineHandoff

Description

The lineHandoff function gives ownership of the specified call to another
application. The application can be either specified directly by its file name or
indirectly as the highest priority application that handles calls of the specified
media mode.

Function Details

LONG WINAPI lineHandoff(
 HCALL hCall,
 LPCSTR lpszFileName,
 DWORD dwMediaMode
);
2-42
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to the call to be handed off. The application must be an owner of the
call. The call state of hCall can be any state.

lpszFileName

A pointer to a null-terminated string. If this pointer parameter is non-NULL,
it contains the file name of the application that is the target of the handoff. If
NULL, the handoff target represents the highest priority application that has
opened the line for owner privilege for the specified media mode. A valid file
name does not include the path of the file.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff.
The dwMediaMode parameter indirectly identifies the target application that
is to receive ownership of the call. This parameter gets ignored if
lpszFileName is not NULL. This parameter uses one and only one of the
LINEMEDIAMODE_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return
values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALMEDIAMODE, LINEERR_TARGETNOTFOUND,
LINEERR_INVALPOINTER, LINEERR_TARGETSELF, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_NOTOWNER.

lineHold

Description

The lineHold function places the specified call on hold.
2-43
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG lineHold(
 HCALL hCall
);

Parameter

hCall

A handle to the call that is to be placed on hold. Ensure the application is an
owner of the call and the call state of hCall is connected.

lineInitialize

Description

Although the lineInitialize function is obsolete, tapi.dll and tapi32.dll continue to
export it for backward compatibility with applications that are using API versions
1.3 and 1.4.

Function Details

LONG WINAPI lineInitialize(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphLineApp

A pointer to a location that is filled with the application's usage handle for
TAPI.

hInstance

The instance handle of the client application or DLL.
2-44
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpfnCallback

The address of a callback function that is invoked to determine status and
events on the line device, addresses, or calls. For more information, see
lineCallbackFunc.

lpszAppName

A pointer to a null-terminated text string that contains only displayable
characters. If this parameter is not NULL, it contains an application-supplied
name for the application. The LINECALLINFO structure provides this name
to indicate, in a user-friendly way, which application originated, originally
accepted, or answered the call. This information can prove useful for call
logging purposes. If lpszAppName is NULL, the application's file name gets
used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this
request, this location gets filled with the number of line devices that is
available to the application.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALAPPNAME, LINEERR_OPERATIONFAILED,
LINEERR_INIFILECORRUPT, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_REINIT, LINEERR_NODRIVER,
LINEERR_NODEVICE, LINEERR_NOMEM,
LINEERR_NOMULTIPLEINSTANCE.
2-45
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineInitializeEx

Description

The lineInitializeEx function initializes the use of TAPI by the application for the
subsequent use of the line abstraction. It registers the specified notification
mechanism of the application and returns the number of line devices that are
available. A line device represents any device that provides an implementation for
the line-prefixed functions in the Telephony API.

Function Details

LONG lineInitializeEx(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);

Parameters

lphLineApp

A pointer to a location that is filled with the TAPI usage handle for the
application.

hInstance

The instance handle of the client application or DLL. The application or DLL
can pass NULL for this parameter, in which case TAPI uses the module
handle of the root executable of the process (for purposes of identifying call
hand-off targets and media mode priorities).
2-46
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpfnCallback

The address of a callback function that is invoked to determine status and
events on the line device, addresses, or calls, when the application is using the
“hidden window” method of event notification. This parameter gets ignored
and should be set to NULL when the application chooses to use the “event
handle” or “completion port” event notification mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only standard
ASCII characters. If this parameter is not NULL, it contains an
application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which
application originated, originally accepted, or answered the call. This
information can prove useful for call-logging purposes. If
lpszFriendlyAppName is NULL, the module filename of the application gets
used instead (as returned by the Windows API GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this
request, this location gets filled with the number of line devices that are
available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this
DWORD, before calling this function, to the highest API version that it is
designed to support (for example, the same value that it would pass into
dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that
artificially high values are not used; the value must be set to 0x00020000.
TAPI translates any newer messages or structures into values or formats that
the application supports. Upon successful completion of this request, this
location is filled with the highest API version that TAPI, 0x00020000,
supports thereby allowing the application to detect and adapt to having been
installed on a system with an older version of TAPI.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS that contains
additional Parameters that are used to establish the association between the
application and TAPI (specifically, the selected event notification mechanism
of the application and associated parameters).
2-47
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineMakeCall

Description

The lineMakeCall function places a call on the specified line to the specified
destination address. Optionally, you can specify call parameters if anything but
default call setup parameters are requested.

Function Details

LONG lineMakeCall(
 HLINE hLine,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLine

A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the application
receives LINE_REPLY message that indicates that the lineMakeCall function
successfully completed. Use this handle to identify the call when invoking
other telephony operations on the call. The application initially acts as the
sole owner of this call. This handle registers as void if the function returns an
error (synchronously or asynchronously by the reply message).

lpszDestAddress

A pointer to the destination address. This parameter follows the standard
dialable number format. This pointer can be NULL for non-dialed addresses
or when all dialing is performed by using lineDial. In the latter case,
lineMakeCall allocates an available call appearance that would typically
remain in the dial tone state until dialing begins.
2-48
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwCountryCode

The country code of the called party. If a value of 0 is specified, the
implementation uses a default.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and
if is non-zero, used to automatically disconnect a call if it is not answered
after the specified time.

lineMonitorDigits

Description

The lineMonitorDigits function enables and disables the unbuffered detection of
digits that are received on the call. Each time that a digit of the specified digit
mode is detected, a message gets sent to the application to indicate which digit
has been detected.

Function Details

LONG lineMonitorDigits(
 HCALL hCall,
 DWORD dwDigitModes
);

Parameters

hCall

A handle to the call on which digits are to be detected. The call state of hCall
can be any state except idle or disconnected.
2-49
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero,
the system cancels digit monitoring. This parameter can have multiple flags
set and uses the following LINEDIGITMODE_ constant:

LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for
DTMF include ‘0’ through ‘9’, ‘*’, and ‘#’.

lineMonitorTones

Description

The lineMonitorTones function enables and disables the detection of inband tones
on the call. Each time that a specified tone is detected, a message gets sent to the
application.

Function Details

LONG lineMonitorTones(
 HCALL hCall,
 LPLINEMONITORTONE const lpToneList,
 DWORD dwNumEntries
);

Parameters

hCall

A handle to the call on which tones are to be detected. The call state of hCall
can be any state except idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in
this list has an application-defined tag field that is used to identify individual
tones in the list to report a tone detection. Calling this operation with either
NULL for lpToneList or with another tone list cancels or changes tone
monitoring in progress.
2-50
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwNumEntries

The number of entries in lpToneList. This parameter gets ignored if
lpToneList is NULL.

lineNegotiateAPIVersion

Description

The lineNegotiateAPIVersion function allows an application to negotiate an API
version to use. The Cisco TSP supports TAPI 2.0 and 2.1.

Function Details

LONG lineNegotiateAPIVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The
high-order word specifies the major version number; the low-order word
specifies the minor version number.
2-51
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwAPIHighVersion

The most recent API version with which the application is compliant. The
high-order word specifies the major version number; the low-order word
specifies the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number
that was negotiated. If negotiation succeeds, this number falls in the range
between dwAPILowVersion and dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. If the service provider
for the specified dwDeviceID supports provider-specific extensions, upon a
successful negotiation, this structure gets filled with the extension identifier
of these extensions. This structure contains all zeros if the line provides no
extensions. An application can ignore the returned parameter if it does not use
extensions.

The Cisco TSP extensionID specifies 0x8EBD6A50, 0x138011d2,
0x905B0060, 0xB03DD275.

lineNegotiateExtVersion

Description

The lineNegotiateExtVersion function allows an application to negotiate an
extension version to use with the specified line device. You do not need to call this
operation if the application does not support extensions.

Function Details

LONG lineNegotiateExtVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtLowVersion,
 DWORD dwExtHighVersion,
 LPDWORD lpdwExtVersion
);
2-52
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The API version number that was negotiated for the specified line device by
using lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension identifier returned by
lineNegotiateAPIVersion with which the application is compliant. The
high-order word specifies the major version number; the low-order word
specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier returned by
lineNegotiateAPIVersion with which the application is compliant. The
high-order word specifies the major version number; the low-order word
specifies the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version
number that was negotiated. If negotiation succeeds, this number falls
between dwExtLowVersion and dwExtHighVersion.

lineOpen

Description

The lineOpen function opens the line device that its device identifier specifies and
returns a line handle for the corresponding opened line device. Subsequent
operations on the line device use this line handle.
2-53
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG lineOpen(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPHLINE lphLine,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivileges,
 DWORD dwMediaModes,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

Identifies the line device to be opened. It either can be a valid device identifier
or the value

LINEMAPPER

Note The Cisco TSP does not support LINEMAPPER at this time.

lphLine

A pointer to an HLINE handle that is then loaded with the handle representing
the opened line device. Use this handle to identify the device when you are
invoking other functions on the open line device.

dwAPIVersion

The API version number under which the application and Telephony API
operate. Obtain this number with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service
provider operate. This number remains zero if the application does not use
any extensions. Obtain this number with lineNegotiateExtVersion.
2-54
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwCallbackInstance

User-instance data that is passed back to the application with each message
that is associated with this line or with addresses or calls on this line. The
Telephony API does not interpret this parameter.

dwPrivileges

The privilege that the application wants for the calls for which it is notified.
This parameter can be a combination of the LINECALLPRIVILEGE_
constants. For applications that are using TAPI version 2.0 or later, values for
this parameter can also be combined with the LINEOPENOPTION_
constants:

– LINECALLPRIVILEGE_NONE - The application can make only
outgoing calls.

– LINECALLPRIVILEGE_MONITOR - The application can monitor only
incoming and outgoing calls.

– LINECALLPRIVILEGE_OWNER - The application can own only
incoming calls of the types that are specified in dwMediaModes.

– LINECALLPRIVILEGE_MONITOR +
LINECALLPRIVILEGE_OWNER - The application can own only
incoming calls of the types that are specified in dwMediaModes, but if it
is not an owner of a call, it is a monitor.

– Other flag combinations return the LINEERR_INVALPRIVSELECT
error.

dwMediaModes

The media mode or modes of interest to the application. Use this parameter
to register the application as a potential target for incoming call and call
hand-off for the specified media mode. This parameter proves meaningful
only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and
ignored if it is not).
2-55
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
This parameter uses the following LINEMEDIAMODE_ constant:

– LINEMEDIAMODE_INTERACTIVEVOICE - The application can
handle calls of the interactive voice media type; that is, it manages voice
calls with the user on this end of the call. Use this parameter for
third-party call control of physical phones and CTI port and CTI route
point devices that other applications opened.

– LINEMEDIAMODE_AUTOMATEDVOICE - Voice energy exists on the
call. An automated application locally handles the voice. This represents
first-party call control and is used with CTI port and CTI route point
devices.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and
if is non-zero, used to automatically disconnect a call if it is not answered
after the specified time.

linePark

Description

The linePark function parks the specified call according to the specified park
mode.

Function Details

LONG WINAPI linePark(
HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress

);
2-56
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hCall

Handle to the call to be parked. The application must act as an owner of the
call. The call state of hcall must be connected.

dwParkMode

Park mode with which the call is to be parked. This parameter can have only
a single flag set and uses one of the LINEPARKMODE_Constants.

Note LINEPARKMODE_Constants must be set to
LINEPARKMODE_NONDIRECTED.

lpszDirAddress

Pointer to a null-terminated string that indicates the address where the call is
to be parked when directed park is used. The address specifies in dialable
number format. This parameter gets ignored for nondirected park.

Note This parameter gets ignored.

lpNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address
where the call is parked gets returned in this structure. This parameter gets
ignored for directed park. Within the VARSTRING structure,
dwStringFormat must be set to STRINGFORMAT_ASCII (an ASCII string
buffer that contains a null-terminated string), and the terminating NULL must
be accounted for in the dwStringSize. Before calling linePark, the application
must set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.
2-57
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
linePrepareAddToConference

Description

The linePrepareAddToConference function prepares an existing conference call
for the addition of another party.

If LINEERR_INVALLINESTATE is returned, that means that the line is currently
not in a state in which this operation can be performed. The dwLineFeatures
member includes a list of currently valid operations (of the type LINEFEATURE)
in the LINEDEVSTATUS structure. (Calling lineGetLineDevStatus updates the
information in LINEDEVSTATUS.)

Obtain a conference call handle with lineSetupConference or with
lineCompleteTransfer that is resolved as a three-way conference call. The
linePrepareAddToConference function typically places the existing conference
call in the onHoldPendingConference state and creates a consultation call that can
be added later to the existing conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to
swap an application between the consultation call and the held conference call
with lineSwapHold.

Function Details

LONG WINAPI linePrepareAddToConference(
 HCALL hConfCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hConfCall

A handle to a conference call. The application must act as an owner of this
call. The call state of hConfCall must be connected.
2-58
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lphConsultCall

A pointer to an HCALL handle. This location then gets loaded with a handle
that identifies the consultation call to be added. Initially, the application
serves as the sole owner of this call.

lpCallParams

A pointer to call parameters that gets used when the consultation call is
established. This parameter can be set to NULL if no special call setup
parameters are desired.

Return Values

Returns a positive request identifier if the function is completed asynchronously,
or a negative error number if an error occurs. The dwParam2 parameter of the
corresponding LINE_REPLY message specifies zero if the function succeeds or
it is a negative error number if an error occurs.

Possible return values follow:

LINEERR_BEARERMODEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_CALLUNAVAIL, LINEERR_INVALRATE,
LINEERR_CONFERENCEFULL, LINEERR_NOMEM, LINEERR_INUSE,
LINEERR_NOTOWNER, LINEERR_INVALADDRESSMODE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALBEARERMODE,
LINEERR_OPERATIONFAILED, LINEERR_INVALCALLPARAMS,
LINEERR_RATEUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCONFCALLHANDLE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALLINESTATE,
LINEERR_USERUSERINFOTOOBIG, LINEERR_INVALMEDIAMODE,
LINEERR_UNINITIALIZED.

lineRedirect

Description

The lineRedirect function redirects the specified offered or accepted call to the
specified destination address.
2-59
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Note If the application tries to redirect a call to an address that requires a FAC, CMC,
or both, then the lineRedirect function will return an error. If a FAC is required,
the TSP will return the error LINEERR_FACREQUIRED. If a CMC is required,
the TSP will return the error LINEERR_CMCREQUIRED. If both a FAC and a
CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to redirect a
call to an address that requires a FAC, CMC, or both, should use the
lineDevSpecific - RedirectFACCMC function.

Function Details

LONG lineRedirect(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call to be redirected. The application must act as an owner of
the call. The call state of hCall must be offering, accepted, or connected.

Note The CiscoTSP supports redirecting of calls in the connected call state.

lpszDestAddress

A pointer to the destination address. This follows the standard dialable
number format.

dwCountryCode

The country code of the party to which the call is redirected. If a value of 0 is
specified, the implementation uses a default.
2-60
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineRegisterRequestRecipient

Description

The lineRegisterRequestRecipient function registers the invoking application as a
recipient of requests for the specified request mode.

Function Details

LONG WINAPI lineRegisterRequestRecipient(
 HLINEAPP hLineApp,
 DWORD dwRegistrationInstance,
 DWORD dwRequestMode,
 DWORD bEnable
);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the
LINE_REQUEST message. This message notifies the application that a
request is pending. This parameter gets ignored if bEnable is set to zero. TAPI
examines this parameter only for registration, not for deregistration. The
dwRegistrationInstance value that is used while deregistering need not match
the dwRegistrationInstance used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. This
parameter uses one or more LINEREQUESTMODE_ Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the
application deregisters for the specified request modes.
2-61
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALREQUESTMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

lineRemoveProvider

Description

The lineRemoveProvider function removes an existing telephony service provider
from the telephony system.

Function Details

LONG WINAPI lineRemoveProvider(
 DWORD dwPermanentProviderID,
 HWND hwndOwner
);

Parameters

dwPermanentProviderID

The permanent provider identifier of the service provider that is to be
removed.

hwndOwner

A handle to a window to which any dialog boxes that need to be displayed as
part of the removal process (for example, a confirmation dialog box by the
service provider's TSPI_providerRemove function) would be attached. The
parameter can be a NULL value to indicate that any window that is created
during the function should have no owner window.
2-62
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM,
LINEERR_INVALPARAM, LINEERR_OPERATIONFAILED.

lineSetAppPriority

Description

The lineSetAppPriority function allows an application to set its priority in the
handoff priority list for a particular media type or Assisted Telephony request
mode or to remove itself from the priority list.

Function Details

LONG WINAPI lineSetAppPriority(
 LPCSTR lpszAppFilename,
 DWORD dwMediaMode,
 LPLINEEXTENSIONID lpExtensionID,
 DWORD dwRequestMode,
 LPCSTR lpszExtensionName,
 DWORD dwPriority
);

Parameters

lpszAppFilename

A pointer to a string that contains the application executable module filename
(without directory information). In TAPI version 2.0 or later, the parameter
can specify a filename in either long or 8.3 filename format.

dwMediaMode

The media type for which the priority of the application is to be set. The value
can be one LINEMEDIAMODE_ Constant; only a single bit may be on. Use
the value zero to set the application priority for Assisted Telephony requests.
2-63
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. This parameter gets
ignored.

dwRequestMode

If the dwMediaMode parameter is zero, this parameter specifies the Assisted
Telephony request mode for which priority is to be set. It must be either
LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter gets ignored if
dwMediaMode is nonzero.

lpszExtensionName

This parameter gets ignored.

dwPriority

The new priority for the application. If the value 0 is passed, the application
gets removed from the priority list for the specified media or request mode (if
it was already not present, no error gets generated). If the value 1 is passed,
the application gets inserted as the highest priority application for the media
or request mode (and removed from a lower-priority position, if it was already
in the list). Any other value generates an error.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INIFILECORRUPT, LINEERR_INVALREQUESTMODE,
LINEERR_INVALAPPNAME, LINEERR_NOMEM,
LINEERR_INVALMEDIAMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPARAM, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER.
2-64
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineSetCallPrivilege

Description

The lineSetCallPrivilege function sets the application's privilege to the specified
privilege.

Function Details

LONG WINAPI lineSetCallPrivilege(
 HCALL hCall,
 DWORD dwCallPrivilege
);

Parameters

hCall

A handle to the call whose privilege is to be set. The call state of hCall can
be any state.

dwCallPrivilege

The privilege that the application can have for the specified call. This
parameter uses one and only one LINECALLPRIVILEGE_ Constant.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALCALLPRIVILEGE, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.
2-65
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineSetNumRings

Description

The lineSetNumRings function sets the number of rings that must occur before an
incoming call is answered. Use this function to implement a toll-saver-style
function. It allows multiple, independent applications to each register the number
of rings. The function lineGetNumRings returns the minimum number of rings
that are requested. The application that answers incoming calls can use it to
determine the number of rings that it should wait before answering the call.

Function Details

LONG WINAPI lineSetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwNumRings
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates
with an address; the identifier remains constant across operating system
upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll-saver
requests from all applications.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:
2-66
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALADDRESSID, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.
2-67
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineSetStatusMessages

Description

The lineSetStatusMessages function enables an application to specify which
notification messages to receive for events that are related to status changes for
the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages(
 HLINE hLine,
 DWORD dwLineStates,
 DWORD dwAddressStates
);

Parameters

hLine

A handle to the line device.

dwLineStates

A bit array that identifies for which line-device status changes a message is
to be sent to the application. This parameter uses the following
LINEDEVSTATE_ constants:

– LINEDEVSTATE_OTHER - Device-status items other than those listed
below changed. The application should check the current device status to
determine which items changed.

– LINEDEVSTATE_RINGING - The switch tells the line to alert the user.
Service providers notify applications on each ring cycle by sending
LINE_LINEDEVSTATE messages that contain this constant. For
example, in the United States, service providers send a message with this
constant every 6 seconds.

– LINEDEVSTATE_NUMCALLS - The number of calls on the line device
changed.
2-68
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
– LINEDEVSTATE_REINIT - Items changed in the configuration of line
devices. To become aware of these changes (as with the appearance of
new line devices) the application should reinitialize its use of TAPI. New
lineInitialize, lineInitializeEx, and lineOpen requests get denied until
applications have shut down their usage of TAPI. The hDevice parameter
of the LINE_LINEDEVSTATE message remains NULL for this state
change as it applies to any of the lines in the system. Because of the
critical nature of LINEDEVSTATE_REINIT, such messages cannot be
masked, so the setting of this bit is ignored, and the messages always get
delivered to the application.

– LINEDEVSTATE_REMOVED - Indicates that the service provider is
removing the device from the system (most likely through user action,
through a control panel or similar utility). Normally, a LINE_CLOSE
message on the device immediately follows LINE_LINEDEVSTATE
message with this value. Subsequent attempts to access the device prior
to TAPI being reinitialized result in LINEERR_NODEVICE being
returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message that contains this value to TAPI, TAPI
passes it along to applications that have negotiated TAPI version 1.4 or
later; applications negotiating a previous TAPI version do not receive any
notification.

dwAddressStates

A bit array that identifies for which address status changes a message is to be
sent to the application. This parameter uses the following
LINEADDRESSSTATE_ constant:

– LINEADDRESSSTATE_NUMCALLS - The number of calls on the
address changed. This change results from events such as a new incoming
call, an outgoing call on the address, or a call changing its hold status.

lineSetTollList

Description

The lineSetTollList function manipulates the toll list.
2-69
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Function Details

LONG WINAPI lineSetTollList(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPCSTR lpszAddressIn,
 DWORD dwTollListOption
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not
yet called the lineInitializeEx function, it can set the hLineApp parameter to
NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be
dialed, so variations in dialing procedures on different lines can be applied to
the translation process.

lpszAddressIn

A pointer to a null-terminated string that contains the address from which the
prefix information is to be extracted for processing. This parameter must not
be NULL, and it must be in the canonical address format.

dwTollListOption

The toll list operation to be performed. This parameter uses one and only one
of the LINETOLLLISTOPTION_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_BADDEVICEID, LINEERR_NODRIVER,
LINEERR_INVALAPPHANDLE, LINEERR_NOMEM,
LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED,
LINEERR_INVALPARAM, LINEERR_RESOURCEUNAVAIL,
LINEERR_INIFILECORRUPT, LINEERR_UNINITIALIZED,
LINEERR_INVALLOCATION
2-70
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lineSetupConference

Description

The lineSetupConference function initiates a conference given an existing
two-party call that the hCall parameter specifies. A conference call and consult
call are established and the handles return to the application. Use the consult call
to dial the third party and the conference call replaces the initial two-party call.
The application can also specify the destination address of the consult call that
will allow the PBX to dial the call for the application.

Function Details

LONG lineSetupConference (
HCALL hCall,
HLINE hLine,
LPHCALL lphConfCall,
LPHCALL lphConsultCall,
DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the existing two-party call. The application must be the owner
of the call.

hLine

The line on which the initial two-party call was made. This parameter does
not get used because hCall must be set.

lphConfCall

A pointer to the conference call handle. The service provider allocates this
call and returns the handle to the application.
2-71
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lphConsultCall

A pointer to the consult call. If the application does not specify the
destination address in the call parameters, it should use this call handle to dial
the consult call. If the destination address is specified, the consult call will be
made using this handle.

dwNumParties

The number of parties in the conference call. Currently the Cisco TAPI
Service Provider supports a three-party conference call.

lpCallParams

The call parameters that are used to set up the consult call. The application
can specify the destination address if it wants the consult call to be dialed for
it in the conference setup.

lineSetupTransfer

Description

The lineSetupTransfer function initiates a transfer of the call that the hCall
parameter specifies. It establishes a consultation call, lphConsultCall, on which
the party can be dialed that can become the destination of the transfer. The
application acquires owner privilege to the lphConsultCall parameter.

Function Details

LONG lineSetupTransfer(
 HCALL hCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the call to be transferred. The application must be an owner of
the call. The call state of hCall must be connected.
2-72
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle that
identifies the temporary consultation call. When setting up a call for transfer,
a consultation call automatically gets allocated that enables lineDial to dial
the address that is associated with the new transfer destination of the call. The
originating party can carry on a conversation over this consultation call prior
to completing the transfer. The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The
application may need to ignore the new consultation call and remove the hold
on an existing held call (using lineUnhold) to identify the destination of the
transfer. On switches that support cross-address call transfer, the consultation
call can exist on a different address than the call to be transferred. It may also
be necessary that the consultation call be set up as an entirely new call, by
lineMakeCall, to the destination of the transfer. The address capabilities of
the call specifies which forms of transfer are available.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and,
if is non-zero, used to automatically disconnect a call if it is not answered
after the specified time.

lineShutdown

Description

The lineShutdown function shuts down the usage of the line abstraction of the
API.

Function Details

LONG lineShutdown(
 HLINEAPP hLineApp
);
2-73
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hLineApp

The usage handle of the application for the line API.

lineTranslateAddress

Description

The lineTranslateAddress function translates the specified address into another
format.

Function Details

LONG WINAPI lineTranslateAddress(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 LPCSTR lpszAddressIn,
 DWORD dwCard,
 DWORD dwTranslateOptions,
 LPLINETRANSLATEOUTPUT lpTranslateOutput
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If a TAPI 2.0 application
has not yet called the lineInitializeEx function, it can set the hLineApp
parameter to NULL. TAPI 1.4 applications must still call lineInitialize first.

dwDeviceID

The device identifier for the line device upon which the call is intended to be
dialed, so variations in dialing procedures on different lines can be applied to
the translation process.
2-74
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
dwAPIVersion

Indicates the highest version of TAPI that the application supports (not
necessarily the value negotiated by lineNegotiateAPIVersion on some
particular line device).

lpszAddressIn

Pointer to a null-terminated string that contains the address from which the
information is to be extracted for translation. This parameter must be in either
the canonical address format or an arbitrary string of dialable digits
(non-canonical). This parameter must not be NULL. If the AddressIn
contains a subaddress or name field, or additional addresses separated from
the first address by CR and LF characters, only the first address gets
translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the
CARDOVERRIDE bit is set in dwTranslateOptions. This parameter specifies
the permanent identifier of a Card entry in the [Cards] section in the registry
(as obtained from lineTranslateCaps) that should be used instead of the
PreferredCardID that is specified in the definition of the CurrentLocation. It
does not cause the PreferredCardID parameter of the current Location entry
in the registry to be modified; the override applies only to the current
translation operation. This parameter gets ignored if the CARDOVERRIDE
bit is not set in dwTranslateOptions.

dwTranslateOptions

The associated operations to be performed prior to the translation of the
address into a dialable string. This parameter uses one of the
LINETRANSLATEOPTION_ Constants.

Note If you have set the
LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags
member of the LINECALLPARAMS structure (passed in to lineMakeCall
through the lpCallParams parameter). This action prevents the line device
from using dialable digits to suppress call interrupts.
2-75
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the
translation operation, of type LINETRANSLATEOUTPUT. Prior to calling
lineTranslateAddress, the application should set the dwTotalSize member of
this structure to indicate the amount of memory that is available to TAPI for
returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_BADDEVICEID, LINEERR_INVALPOINTER,
LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NODRIVER,
LINEERR_INIFILECORRUPT, LINEERR_NOMEM,
LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALCARD, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPARAM.

lineTranslateDialog

Description

The lineTranslateDialog function displays an application-modal dialog box that
allows the user to change the current location of a phone number that is about to
be dialed, adjust location and calling card parameters, and see the effect.

Function Details

LONG WINAPI lineTranslateDialog(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 HWND hwndOwner,
 LPCSTR lpszAddressIn
);
2-76
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not
yet called the lineInitializeEx function, it can set the hLineApp parameter to
NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be
dialed, so variations in dialing procedures on different lines can be applied to
the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not
necessarily the value that is negotiated by lineNegotiateAPIVersion on the
line device that is indicated by dwDeviceID).

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be a
NULL value to indicate that any window that is created during the function
should have no owner window.

lpszAddressIn

A pointer to a null-terminated string that contains a phone number that is
used, in the lower portion of the dialog box, to show the effect of the user's
changes on the location parameters. The number must be in canonical format;
if noncanonical, the phone number portion of the dialog box does not display.
This pointer can be left NULL, in which case the phone number portion of the
dialog box does not display. If the lpszAddressIn parameter contains a
subaddress or name field, or additional addresses separated from the first
address by CR and LF characters, only the first address gets used in the dialog
box.
2-77
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

LINEERR_BADDEVICEID, LINEERR_INVALPARAM,
LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_INVALPOINTER,
LINEERR_INIFILECORRUPT, LINEERR_NODRIVER, LINEERR_INUSE,
LINEERR_NOMEM, LINEERR_INVALADDRESS,
LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED.

lineUnhold

Description

The lineUnhold function retrieves the specified held call.

Function Details

LONG lineUnhold(
 HCALL hCall
);

Parameters

hCall

The handle to the call to be retrieved. The application must be an owner of
this call. The call state of hCall must be onHold, onHoldPendingTransfer, or
onHoldPendingConference.

lineUnpark

Description

The lineUnpark function retrieves the call that is parked at the specified address
and returns a call handle for it.
2-78
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Function Details

LONG WINAPI lineUnpark(
HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress

);

Parameters

hLine

Handle to the open line device on which a call is to be unparked.

dwAddressID

Address on hLine at which the unpark is to be originated. An address
identifier permanently associates with an address; the identifier remains
constant across operating system upgrades.

lphCall

Pointer to the location of type HCALL where the handle to the unparked call
is returned. This handle is unrelated to any other handle that previously may
have been associated with the retrieved call, such as the handle that might
have been associated with the call when it was originally parked. The
application acts as the initial sole owner of this call.

lpszDestAddress

Pointer to a null-terminated character buffer that contains the address where
the call is parked. The address displays in standard dialable address format.

TAPI Line Messages
This section describes the line messages that the Cisco TSP supports. These
messages notify the application of asynchronous events such as the a new call
arriving in the Cisco CallManager. The messages get sent to the application using
the method that the application specifies in lineInitializeEx
2-79
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
.

LINE_ADDRESSSTATE

Description

The LINE_ADDRESSSTATE message gets sent when the status of an address
changes on a line that is currently open by the application. The application can
invoke lineGetAddressStatus to determine the current status of the address.

Function Details

LINE_ADDRESSSTATE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idAddress;

Table 2-2 TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE

LINE_APPNEWCALL

LINE_CALLINFO

LINE_CALLSTATE

LINE_CLOSE

LINE_CREATE

LINE_DEVSPECIFIC

LINE_GENERATE

LINE_LINEDEVSTATE

LINE_MONITORDIGITS

LINE_MONITORTONE

LINE_REMOVE

LINE_REPLY

LINE_REQUEST
2-80
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device.

dwCallbackInstance

The callback instance that supplied when the line is opened.

dwParam1

The address identifier of the address that changed status.

dwParam2

The address state that changed. Can be a combination of these values:

LINEADDRESSSTATE_OTHER

Address-status items other than those listed below changed. The application
should check the current address status to determine which items changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.

LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).

LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations
to being used by just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to
being used by more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from
events such as a new inbound call, an outbound call on the address, or a call
changing its hold status.
2-81
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings
for determining a no-answer condition. The application should check the
address status to determine details about the address's current forwarding
status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address changed.

LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other
circumstances, one or more of the members in the LINEADDRESSCAPS
structure for the address changed. The application should use
lineGetAddressCaps to read the updated structure. Applications that support
API versions earlier than 1.4 receive a LINEDEVSTATE_REINIT message
that requires them to shut down and reinitialize their connection to TAPI to
obtain the updated information.

dwParam3

Not used.

LINE_APPNEWCALL

Description

The LINE_APPNEWCALL message informs an application when a new call
handle was spontaneously created on its behalf (other than through an API call
from the application, in which case the handle would have been returned through
a pointer parameter that passed into the function).

Function Details

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) dwInstanceData;
dwParam1 = (DWORD) dwAddressID;
dwParam2 = (DWORD) hCall;
dwParam3 = (DWORD) dwPrivilege;
2-82
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Parameters

dwDevice

The handle of the application to the line device on which the call was created.

dwCallbackInstance

The callback instance that is supplied when the line belonging to the call is
opened.

dwParam1

Identifier of the address on the line on which the call appears.

dwParam2

The handle of the application to the new call.

dwParam3

The privilege of the application to the new call
(LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

LINE_CALLINFO

Description

The TAPI LINE_CALLINFO message gets sent when the call information about
the specified call has changed. The application can invoke lineGetCallInfo to
determine the current call information.

Function Details

LINE_CALLINFO
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;
2-83
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the call's line is opened.

dwParam1

The call information item that changed. Can be one or more of the
LINECALLINFOSTATE_ constants.

dwParam2

Not used.

dwParam3

Not used.

LINE_CALLSTATE

Description

The LINE_CALLSTATE message gets sent when the status of the specified call
changed. Typically, several such messages are received during the lifetime of a
call. Applications get notified of new incoming calls with this message; the new
call is in the offering state. The application can use the lineGetCallStatus function
to retrieve more detailed information about the current status of the call.

Function Details

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallState;
dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;
2-84
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line belonging to this call is
opened.

dwParam1

The new call state.

Note CiscoTSP only supports the following LINECALLSTATE_ values.

– LINECALLSTATE_IDLE - The call is idle; no call actually exists.

– LINECALLSTATE_OFFERING - The call is being offered to the station,
signaling the arrival of a new call. In some environments, a call in the
offering state does not automatically alert the user. The switch instructing
the line to ring does alerts; it does not affect any call states.

– LINECALLSTATE_ACCEPTED - The call was offering and has been
accepted. This indicates to other (monitoring) applications that the
current owner application has claimed responsibility for answering the
call. In ISDN, this also indicates that alerting to both parties has started.

– LINECALLSTATE_CONFERENCED - The call is a member of a
conference call and is logically in the connected state.

– LINECALLSTATE_DIALTONE - The call is receiving a dial tone from
the switch, which means that the switch is ready to receive a dialed
number.

– LINECALLSTATE_DIALING - Destination address information (a
phone number) is being sent to the switch over the call. The
lineGenerateDigits does not place the line into the dialing state.

– LINECALLSTATE_RINGBACK - The call is receiving ringback from
the called address. Ringback indicates that the other station has been
reached and is being alerted.

– LINECALLSTATE_ONHOLDPENDCONF- The call is currently on
hold while it is being added to a conference.
2-85
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
– LINECALLSTATE_CONNECTED - The call has been established and
the connection is made. Information can flow over the call between the
originating address and the destination address.

– LINECALLSTATE_PROCEEDING - Dialing completed, and the call is
proceeding through the switch or telephone network.

– LINECALLSTATE_ONHOLD - The call is on hold by the switch.

– LINECALLSTATE_ONHOLDPENDTRANSFER - The call is currently
on hold awaiting transfer to another number.

– LINECALLSTATE_DISCONNECTED - The remote party disconnected
from the call.

– LINECALLSTATE_UNKNOWN - The state of the call is not known.
This state may be due to limitations of the call-progress detection
implementation.

Note If application negotiates extension version 0x00050001 or greater can
receive dev specific CLDSMT_CALL_PROGRESSING_STATE =
0x01000000 with LINECALLSTATE_UNKNOWN. This is a devspecific
TAPI call state supported by Cisco CallManager.

dwParam2

Call-state-dependent information.

If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains
details about the connected mode. This parameter uses the following
LINECONNECTEDMODE_ constants:

– LINECONNECTEDMODE_ACTIVE - The call is connected at the
current station (the current station acts as a participant in the call).

– LINECONNECTEDMODE_INACTIVE - The call is active at one or
more other stations, but the current station is not a participant in the call.

When a call is disconnected with cause code =
DISCONNECTMODE_TEMPFAILURE and the lineState =
LINEDEVSTATE_INSERVICE, applications must take care of dropping the
call. If the application is terminating media for a device, then it is also the
responsibility of the application to stop the RTP streams for the same call.
TSP will not provide Stop Transmission/Reception events to applications in
this scenario. The behavior is exactly same with IP Phones. The User needs
2-86
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
to hang up the disconnected - temp fail call on IPPhone to stop the media. The
application is also responsible for stopping the RTP streams in case the line
goes out of service (LINEDEVSTATE_OUTOFSERVICE) and the call on a
line is reported as IDLE.

Note If an application with negotiated extension version 0x00050001 or greater
receives device-specific CLDSMT_CALL_PROGRESSING_STATE =
0x01000000 with LINECALLSTATE_UNKNOWN, then the cause code
will be reported as the standard Q931 cause codes in dwParam2.

If dwParam1 is LINECALLSTATE_DIALTONE, dwParam2 contains the
details about the dial tone mode. This parameter uses the following
LINEDIALTONEMODE_ constant:

– LINEDIALTONEMODE_UNAVAIL - The dial tone mode is unavailable
and cannot become known.

If dwParam1 is LINECALLSTATE_OFFERING, dwParam2 contains details
about the connected mode. This parameter uses the following
LINEOFFERINGMODE_ constants:

– LINEOFFERINGMODE_ACTIVE - The call alerts at the current station
(accompanied by LINEDEVSTATE_RINGING messages) and, if an
application is set up to automatically answer, it answers. For TAPI
versions 1.4 and later, if the call state mode is ZERO, the application
assumes that the value iss active (which is the situation on a non-bridged
address).

Note The CiscoTSP does not send LINEDEVSTATE_RINGING messages
until the call is accepted and moves to the
LINECALLSTATE_ACCEPTED state. IP_phones auto-accept calls.
CTI ports and CTI route points do not auto-accept calls. Call the
lineAccept() function to accept the call at these types of devices.

If dwParam1 is LINECALLSTATE_DISCONNECTED, dwParam2 contains
details about the disconnect mode. This parameter uses the following
LINEDISCONNECTMODE_ constants:

– LINEDISCONNECTMODE_NORMAL - This specifies a “normal”
disconnect request by the remote party, the call terminated normally.
2-87
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
– LINEDISCONNECTMODE_UNKNOWN - The reason for the
disconnect request is unknown.

– LINEDISCONNECTMODE_REJECT - The remote user rejected the
call.

– LINEDISCONNECTMODE_BUSY - The station that belongs to the
remote user is busy.

– LINEDISCONNECTMODE_NOANSWER - The station that belongs to
the remote user does not answer.

– LINEDISCONNECTMODE_CONGESTION - The network is
congested.

– LINEDISCONNECTMODE_UNAVAIL - The reason for the disconnect
is unavailable and cannot become known later.

– LINEDISCONNECTMODE_FACCMC - The call has been disconnected
by the FAC/CMC feature.

Note LINEDISCONNECTMODE_FACCMC is only returned if the extension version
negotiated on the line is 0x00050000 (5.0) or higher. If the negotiated extension
version is not at least 0x00050000, then the TSP will set the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.

dwParam3

If zero, this parameter indicates that there has not been a change in the
privilege for the call to this application.

If nonzero, this parameter specifies the privilege for the application to the
call. This occurs in the following situations: (1) The first time that the
application receives a handle to this call; (2) When the application is the
target of a call hand-off (even if the application already was an owner of the
call). This parameter uses the following LINECALLPRIVILEGE_ constants:

– LINECALLPRIVILEGE_MONITOR - The application has monitor
privilege.

– LINECALLPRIVILEGE_OWNER - The application has owner
privilege.
2-88
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINE_CLOSE

Description

The LINE_CLOSE message gets sent when the specified line device has been
forcibly closed. The line device handle or any call handles for calls on the line are
no longer valid after this message has been sent.

Function Details

LINE_CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid

dwCallbackInstance

The callback instance that is supplied when the line belonging to this call is
opened.

dwParam1

Not used.

dwParam2

Not used.

dwParam3

Not used.
2-89
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINE_CREATE

Description

The LINE_CREATE message informs the application of the creation of a new line
device.

Note CTI Manager cluster support, extension mobility, change notification, and user
addition to the directory can generate LINE_CREATE events.

Function Details

LINE_CREATE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

Not used.

dwCallbackInstance

Not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2

Not used.

dwParam3

Not used.
2-90
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINE_DEVSPECIFIC

Description

The LINE_DEVSPECIFIC message notifies the application about device-specific
events that are occurring on a line, address, or call. The meaning of the message
and the interpretation of the parameters are device specific.

Function Details

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceSpecific1;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

A handle to either a line device or call. This is device specific.

dwCallbackInstance

The callback instance that is supplied when the line is opened.

dwParam1

Device specific

dwParam2

Device specific

dwParam3

Device specific
2-91
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINE_GENERATE

Description

The TAPI LINE_GENERATE message notifies the application that the current
digit or tone generation terminated. Only one such generation request can be in
progress an a given call at any time. This message also gets sent when digit or tone
generation is canceled.

Function Details

LINE_GENERATE
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GenerateTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line is opened.

dwParam1

The reason that digit or tone generation terminated. This parameter must be
one and only one of the LINEGENERATETERM_ constants.

dwParam2

Not used.

dwParam3

The "tick count" (number of milliseconds since Windows started) at which
the digit or tone generation completed. For API versions earlier than 2.0, this
parameter does not get used.
2-92
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
LINE_LINEDEVSTATE

Description

The TAPI LINE_LINEDEVSTATE message gets sent when the state of a line
device changes. The application can invoke lineGetLineDevStatus to determine
the new status of the line.

Function Details

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetail1;
dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

hDevice

A handle to the line device. This parameter is NULL when dwParam1 is
LINEDEVSTATE_REINIT.

dwCallbackInstance

The callback instance that is supplied when the line is opened. If the
dwParam1 parameter is LINEDEVSTATE_REINIT, the dwCallbackInstance
parameter is not valid and is set to zero.

dwParam1

The line device status item that changed. The parameter can be one or more
of the LINEDEVSTATE_ constants.

dwParam2

The interpretation of this parameter depends on the value of dwParam1. If
dwParam1 is LINEDEVSTATE_RINGING, dwParam2 contains the ring
mode with which the switch instructs the line to ring. Valid ring modes
include numbers in the range one to dwNumRingModes, where
dwNumRingModes specifies a line device capability.
2-93
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by
TAPI as a result of translation of a new API message into a REINIT message,
dwParam2 contains the dwMsg parameter of the original message (for
example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2 is zero,
this indicates that the REINIT message is a "real" REINIT message that
requires the application to call lineShutdown at its earliest convenience.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If
dwParam1 is LINEDEVSTATE_RINGING, dwParam3 contains the ring
count for this ring event. The ring count starts at zero.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as
a result of translation of a new API message into a REINIT message,
dwParam3 contains the dwParam1 parameter of the original message (for
example, LINEDEVSTATE_TRANSLATECHANGE or some other
LINEDEVSTATE_ value, if dwParam2 is LINE_LINEDEVSTATE, or the
new device identifier, if dwParam2 is LINE_CREATE).

LINE_MONITORDIGITS

Description

The LINE_MONITORDIGITS message gets sent when a digit is detected. The
lineMonitorDigits function controls the sending of this message.

Function Details

LINE_MONITORDIGITS
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) Digit;
dwParam2 = (DWORD) DigitMode;
dwParam3 = (DWORD) 0;
2-94
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line for this call is opened.

dwParam1

The low-order byte contains the last digit that is received in ASCII.

dwParam2

The digit mode that was detected. This parameter must be one and only one
of the following LINEDIGITMODE_ constant:

– LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits
for DTMF includes ‘0’ through ‘9’, ‘*’, and ‘#’.

dwParam3

The “tick count” (number of milliseconds since Windows started) at which
the specified digit was detected. For API versions earlier than 2.0, this
parameter does not get used.

LINE_MONITORTONE

Description

The LINE_MONITORTONE message gets sent when a tone is detected. The
lineMonitorTones function controls the sending of this message.

Note CiscoTSP supports only silent detection through LINEMONITORTONE.

Function Details

LINE_MONITORTONE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) dwAppSpecific;
2-95
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance supplied when opening the line for this call.

dwParam1

The application-specific dwAppSpecific member of the
LINEMONITORTONE structure for the tone that was detected.

dwParam2

Not used.

dwParam3

The “tick count” (number of milliseconds since Windows started) at which
the specified digit was detected.

LINE_REMOVE

Description

The LINE_REMOVE message informs an application of the removal (deletion
from the system) of a line device. Generally, this parameter does not get used for
temporary removals, such as extraction of PCMCIA devices, but only for
permanent removals in which the device would no longer be reported by the
service provider, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user
deletion from the directory can generate LINE_REMOVE events.
2-96
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
Function Details

LINE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

Reserved. Set to zero.

dwCallbackInstance

Reserved. Set to zero.

dwParam1

Identifier of the line device that was removed.

dwParam2

Reserved. Set to zero.

dwParam3

Reserved. Set to zero.

LINE_REPLY

Description

The LINE_REPLY message reports the results of function calls that completed
asynchronously.

Function Details

LINE_REPLY
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
2-97
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Messages
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

Not used.

dwCallbackInstance

Returns the callback instance for this application.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter
into a long integer:

– Zero indicates success.

– A negative number indicates an error.

dwParam3

Not used.

LINE_REQUEST

Description

The TAPI LINE_REQUEST message reports the arrival of a new request from
another application.

Function Details

LINE_REQUEST
hDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hRegistration;
dwParam1 = (DWORD) RequestMode;
dwParam2 = (DWORD) RequestModeDetail1;
dwParam3 = (DWORD) RequestModeDetail2;
2-98
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Parameters

hDevice

Not used.

dwCallbackInstance

The registration instance of the application that is specified on
lineRegisterRequestRecipient.

dwParam1

The request mode of the newly pending request. This parameter uses the
LINEREQUESTMODE_ constants.

dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the
hWnd of the application that requests the drop. Otherwise, dwParam2 does
not get used.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of
dwParam3 contains the wRequestID as specified by the application
requesting the drop. Otherwise,

dwParam3 is not used.

TAPI Line Structures
This section describes the line device structures, shown in Table 2-3, that the
Cisco TSP supports, lists the possible values for the structure members as set by
the TSP, and provides a cross reference to the functions that use them. If the value
of a structure member is device, line, or call specific, the system notes the value
for each condition.

Table 2-3 TAPI Line Device Structures

TAPI Line Structures

LINEADDRESSCAPS

LINEADDRESSSTATUS
2-99
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEAPPINFO

LINECALLINFO

LINECALLLIST

LINECALLPARAMS

LINECALLSTATUS

LINECARDENTRY

LINECOUNTRYENTRY

LINECOUNTRYLIST

LINEDEVCAPS

LINEDEVSTATUS

LINEEXTENSIONID

LINEFORWARD

LINEFORWARDLIST

LINEGENERATETONE

LINEINITIALIZEEXPARAMS

LINELOCATIONENTRY

LINEMESSAGE

LINEMONITORTONE

LINEPROVIDERENTRY

LINEPROVIDERLIST

LINEREQMAKECALL

LINETRANSLATECAPS

LINETRANSLATEOUTPUT

Table 2-3 TAPI Line Device Structures (continued)

TAPI Line Structures
2-100
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEADDRESSCAPS

Members Values

dwLineDeviceID For All Devices:
The device identifier of the line device with which this
address is associated.

dwAddressSize
dwAddressOffset

For All Devices:
The size, in bytes, of the variably sized address field and
the offset, in bytes, from the beginning of this data
structure

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwAddressSharing For All Devices:
0

dwAddressStates For All Devices (except Park DNs):
LINEADDRESSSTATE_FORWARD

For Park DNs:
0

2-101
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallInfoStates For All Devices (except Park DNs):
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_MEDIAMODE
LINECALLINFOSTATE_MONITORMODES
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

For Park DNs:
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

Members Values
2-102
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

Members Values
2-103
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN
For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_ONHOLD
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

Members Values
2-104
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwDialToneModes For IP Phones and CTI Ports:
LINEDIALTONEMODE_UNAVAIL

For CTI Route Points and Park DNs:
0

dwBusyModes For All Devices:
0

dwSpecialInfo For All Devices:
0

dwDisconnectModes For All Devices:
LINEDISCONNECTMODE_BADDADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

dwMaxNumActiveCalls For IP Phones, CTI Ports, and Park DNs:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco CallManager Administration configuration

Members Values
2-105
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwMaxNumOnHoldCalls For IP Phones, CTI Ports:
200

For CTI Route Points:
0

For CTI Route Points (with media):
Cisco CallManager Administration configuration (same
configuration as dwMaxNumActiveCalls)

For Park DNs:

1

dwMaxNumOnHoldPendingCalls For IP Phones and CTI Ports:
1

For CTI Route Points and Park DNs:
0

dwMaxNumConference For IP Phones, CTI Ports, and Park DNs:
16

For CTI Route Points:
0

dwMaxNumTransConf For All Devices:
0

Members Values
2-106
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwAddrCapFlags For IP Phones:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Ports:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Route Points:
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_ROUTEPOINT

For Park DNs:
LINEADDRCAPFLAGS_NOEXTERNALCALLS
LINEADDRCAPFLAGS_NOINTERNALCALLS

Members Values
2-107
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI
Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
2-108
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallFeatures (continued) For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
2-109
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

For Park DNs:
0

dwRemoveFromConfCaps For All Devices:
0

dwRemoveFromConfState For All Devices:
0

dwTransferModes For IP Phones and CTI Ports:
LINETRANSFERMODE_TRANSFER
LINETRANSFERMODE_CONFERENCE

For CTI Route Points and Park DNs:
0

dwParkModes For IP Phones and CTI Ports:
LINEPARKMODE_NONDIRECTED

For CTI Route Points and Park DNs:
0

Members Values
2-110
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwForwardModes For All Devices (except ParkDNs):
LINEFORWARDMODE_UNCOND

For Park DNs:
0

dwMaxForwardEntries For All Devices (except ParkDNs):
1

For Park DNs:
0

dwMaxSpecificEntries For All Devices:
0

dwMinFwdNumRings For All Devices:
0

dwMaxFwdNumRings For All Devices:
0

dwMaxCallCompletions For All Devices:
0

dwCallCompletionConds For All Devices:
0

dwCallCompletionModes For All Devices:
0

dwNumCompletionMessages For All Devices:
0

dwCompletionMsgTextEntrySize For All Devices:
0

dwCompletionMsgTextSize
dwCompletionMsgTextOffset

For All Devices:
0

Members Values
2-111
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwPredictiveAutoTransferStates For All Devices:
0

dwNumCallTreatments For All Devices:
0

dwCallTreatmentListSize
dwCallTreatmentListOffset

For All Devices:
0

dwDeviceClassesSize
dwDeviceClassesOffset

For All Devices (except Park DNs):
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

dwMaxCallDataSize For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

dwMaxNoAnswerTimeout For IP Phones and CTI Ports:
4294967295 (0xFFFFFFFF)

For CTI Route Points and Park DNs:
0

Members Values
2-112
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEADDRESSSTATUS

dwConnectedModes For IP Phones, CTI Ports
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE

For Park DNs:
LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):
0

For CTI Route Points (with media)
LINECONNECTEDMODE_ACTIVE

dwOfferingModes For All Devices:
LINEOFFERINGMODE_ACTIVE

dwAvailableMediaModes For All Devices:
0

Members Values

Members Values

dwNumInUse For All Devices:
1

dwNumActiveCalls For All Devices:
The number of calls on the address that are in call states
other than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the address in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the address in the
onholdpendingtransfer or the onholdpendingconference
state.
2-113
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwNumRingsNoAnswer For All Devices:
0

dwForwardNumEntries For All Devices (except Park DNs):
The number of entries in the array referred to by
dwForwardSize and dwForwardOffset.

For Park DNs:
0

dwForwardSize
dwForwardOffset

For All Devices (except Park DNs):
The size, in bytes, and the offset, in bytes, from the
beginning of this data structure of the variably sized field
that describes the address's forwarding information.
This information appears as an array of
dwForwardNumEntries elements, of type
LINEFORWARD. The offsets of the addresses in the
array are relative to the beginning of the
LINEADDRESSSTATUS structure. The offsets
dwCallerAddressOffset and dwDestAddressOffset in the
variably sized field of type LINEFORWARD pointed to
by dwForwardSize and dwForwardOffset are relative to
the beginning of the LINEADDRESSSTATUS data
structure (the "root" container).

For Park DNs:
0

Members Values
2-114
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEAPPINFO

Description

The LINEAPPINFO structure contains information about the application that is
currently running. The LINEDEVSTATUS structure can contain an array of
LINEAPPINFO structures.

Structure Details

typedef struct lineappinfo_tag {
 DWORD dwMachineNameSize;
 DWORD dwMachineNameOffset;
 DWORD dwUserNameSize;
 DWORD dwUserNameOffset;
 DWORD dwModuleFilenameSize;
 DWORD dwModuleFilenameOffset;
 DWORD dwFriendlyNameSize;
 DWORD dwFriendlyNameOffset;
 DWORD dwMediaModes;
 DWORD dwAddressID;
} LINEAPPINFO, *LPLINEAPPINFO;

Members

dwMachineNameSize

dwMachineNameOffset

Size, in bytes, and offset from the beginning of LINEDEVSTATUS of a string
that specifies the name of the computer on which the application is executing.

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

Members Values
2-115
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwUserNameSize

dwUserNameOffset

Size, in bytes, and offset from the beginning of LINEDEVSTATUS of a string
that specifies the user name under whose account the application is running.

dwModuleFilenameSize

dwModuleFilenameOffset

Size, in bytes, and offset from the beginning of LINEDEVSTATUS of a string
that specifies the module filename of the application. You can use this string
in a call to lineHandoff to perform a directed handoff to the application.

dwFriendlyNameSize

dwFriendlyNameOffset

Size, in bytes, and offset from the beginning of LINEDEVSTATUS of the
string that the application provides to lineInitialize or lineInitializeEx, which
should be used in any display of applications to the user.

dwMediaModes

The media types for which the application has requested ownership of new
calls; zero if the line dwPrivileges did not include
LINECALLPRIVILEGE_OWNER when it opened.

dwAddressID

If the line handle that was opened by using
LINEOPENOPTION_SINGLEADDRESS contains the address identifier
specified set to 0xFFFFFFFF if the single address option was not used.

An address identifier permanently associates with an address; the identifier
remains constant across operating system upgrades.
2-116
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINECALLINFO

Members Values

hLine For All Devices:
The handle for the line device with which this call is
associated.

dwLineDeviceID For All Devices:
The device identifier of the line device with which
this call is associated.

dwAddressID For All Devices:
0

dwBearerMode For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwRate For All Devices:
0

dwMediaMode For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwAppSpecific For All Devices:
Not interpreted by the API implementation and
service provider. Any owner application of this call
can set it with the lineSetAppSpecific function.
2-117
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallID For All Devices:
In some telephony environments, the switch or
service provider can assign a unique identifier to
each call. This allows the call to be tracked across
transfers, forwards, or other events. The domain of
these call IDs and their scope is service
provider-defined. The dwCallID member makes this
unique identifier available to the applications. The
CiscoTSP uses dwCallID to store the "GlobalCallID"
of the call. The "GlobalCallID" represents a unique
identifier that allows applications to identify all of
the call handles that are related to a call.

dwRelatedCallID For All Devices:
0

dwCallParamFlags For All Devices:
0

dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Members Values
2-118
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallStates (continued) For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_BUSY
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINEDIGITMODE_DTMF

For CTI Route Points and Park DNs:
0

Members Values
2-119
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwMonitorMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

DialParams For All Devices:
0

dwOrigin For All Devices:
LINECALLORIGIN_CONFERENCE
LINECALLORIGIN_EXTERNAL
LINECALLORIGIN_INTERNAL
LINECALLORIGIN_OUTBOUND
LINECALLORIGIN_UNAVAIL
LINECALLORIGIN_UNKNOWN

dwReason For All Devices:
LINECALLREASON_DIRECT
LINECALLREASON_FWDBUSY
LINECALLREASON_FWDNOANSWER
LINECALLREASON_FWDUNCOND
LINECALLREASON_PARKED
LINECALLREASON_PICKUP
LINECALLREASON_REDIRECT
LINECALLREASON_REMINDER
LINECALLREASON_TRANSFER
LINECALLREASON_UNKNOWN
LINECALLREASON_UNPARK

dwCompletionID For All Devices:
0

dwNumOwners For All Devices:
The number of application modules with different
call handles with owner privilege for the call.

dwNumMonitors For All Devices:
The number of application modules with different
call handles with monitor privilege for the call.

Members Values
2-120
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCountryCode For All Devices:
0

dwTrunk For All Devices:
0xFFFFFFFF

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCallerIDSize
dwCallerIDOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the caller party ID number information, and
the offset, in bytes, from the beginning of this data
structure.

dwCallerIDNameSize
dwCallerIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the caller party ID name information, and
the offset, in bytes, from the beginning of this data
structure.

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCalledIDSize
dwCalledIDOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the called-party ID number information, and
the offset, in bytes, from the beginning of this data
structure.

dwCalledIDNameSize
dwCalledIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the called-party ID name information, and
the offset, in bytes, from the beginning of this data
structure.

Members Values
2-121
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwConnectedIDSize
dwConnectedIDOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the connected party identifier number
information and the offset, in bytes, from the
beginning of this data structure.

dwConnectedIDNameSize
dwConnectedIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the connected party identifier name
information and the offset, in bytes, from the
beginning of this data structure.

dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionIDSize
dwRedirectionIDOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the redirection party identifier number
information and the offset, in bytes, from the
beginning of this data structure.

dwRedirectionIDNameSize
dwRedirectionIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the redirection party identifier name
information and the offset, in bytes, from the
beginning of this data structure.

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

Members Values
2-122
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwRedirectingIDSize
dwRedirectingIDOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the redirecting party identifier number
information and the offset, in bytes, from the
beginning of this data structure.

dwRedirectingIDNameSize
dwRedirectingIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains the redirecting party identifier name
information and the offset, in bytes, from the
beginning of this data structure.

dwAppNameSize
dwAppNameOffset

For All Devices:
The size, in bytes, and the offset, in bytes, from the
beginning of this data structure of the variably sized
field that holds the user-friendly application name of
the application that first originated, accepted, or
answered the call. This specifies the name that an
application can specify in lineInitializeEx. If the
application specifies no such name, the application's
module filename gets used instead.

dwDisplayableAddressSize
dwDisplayableAddressOffset

For All Devices:

0

dwCalledPartySize
dwCalledPartyOffset

For All Devices:

0

dwCommentSize
dwCommentOffset

For All Devices:

0

dwDisplaySize
dwDisplayOffset

For All Devices:

0

dwUserUserInfoSize
dwUserUserInfoOffset

For All Devices:

0

dwHighLevelCompSize
dwHighLevelCompOffset

For All Devices:

0

Members Values
2-123
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINECALLLIST

Description

The LINECALLLIST structure describes a list of call handles. The
lineGetNewCalls and lineGetConfRelatedCalls functions return a structure of this
type.

Note You must not extend this structure.

dwLowLevelCompSize
dwLowLevelCompOffset

For All Devices:

0

dwChargingInfoSize
dwChargingInfoOffset

For All Devices:

0

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:

0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:

0

dwCallTreatment For All Devices:

0

dwCallDataSize
dwCallDataOffset

For All Devices:

0

dwSendingFlowspecSize
dwSendingFlowspecOffset

For All Devices:

0

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

For All Devices:

0

Members Values
2-124
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Structure Details

typedef struct linecalllist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwCallsNumEntries;
 DWORD dwCallsSize;
 DWORD dwCallsOffset;
} LINECALLLIST, FAR *LPLINECALLLIST;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwCallsNumEntries

The number of handles in the hCalls array.

dwCallsSize

dwCallsOffset

The size, in bytes, and the offset, in bytes, from the beginning of this data
structure of the variably sized field (which is an array of HCALL-sized
handles).
2-125
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINECALLPARAMS

Members Values

dwBearerMode not supported

dwMinRate
dwMaxRate

not supported

dwMediaMode not supported

dwCallParamFlags not supported

dwAddressMode not supported

dwAddressID not supported

DialParams not supported

dwOrigAddressSize
dwOrigAddressOffset

not supported

dwDisplayableAddressSize
dwDisplayableAddressOffset

not supported

dwCalledPartySize
dwCalledPartyOffset

not supported

dwCommentSize
dwCommentOffset

not supported

dwUserUserInfoSize
dwUserUserInfoOffset

not supported

dwHighLevelCompSize
dwHighLevelCompOffset

not supported

dwLowLevelCompSize
dwLowLevelCompOffset

not supported

dwDevSpecificSize
dwDevSpecificOffset

not supported

dwPredictiveAutoTransferStates not supported

dwTargetAddressSize
dwTargetAddressOffset

not supported
2-126
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwSendingFlowspecSize
dwSendingFlowspecOffset

not supported

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

not supported

dwDeviceClassSize
dwDeviceClassOffset

not supported

dwDeviceConfigSize
dwDeviceConfigOffset

not supported

dwCallDataSize
dwCallDataOffset

not supported

dwNoAnswerTimeout For All Devices:
The number of seconds, after the completion of
dialing, that the call should be allowed to wait in the
PROCEEDING or RINGBACK state, before the
service provider automatically abandons it with a
LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A
value of 0 indicates that the application does not
desire automatic call abandonment.

dwCallingPartyIDSize
dwCallingPartyIDOffset

not supported

Members Values
2-127
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINECALLSTATUS

Members Values

dwCallState For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN
2-128
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallState (continued) For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

Members Values
2-129
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallStateMode For IP Phones, CTI Ports:
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE
LINEDIALTONEMODE_NORMAL
LINEDIALTONEMODE_UNAVAIL
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if
negotiated extension version is 0x00050000 or
greater)

For CTI Route Points:
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if
negotiated extension version is 0x00050000 or
greater)

For Park DNs:
LINECONNECTEDMODE_ACTIVE
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT

Members Values
2-130
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallPrivilege For All Devices
LINECALLPRIVILEGE_MONITOR
LINECALLPRIVILEGE_NONE
LINECALLPRIVILEGE_OWNER

dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI
Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
2-131
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCallFeatures (continued) For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

Members Values
2-132
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINECARDENTRY

Description

The LINECARDENTRY structure describes a calling card. The
LINETRANSLATECAPS structure can contain an array of LINECARDENTRY
structures.

Note You must not extend this structure.

Structure Details

typedef struct linecardentry_tag {
 DWORD dwPermanentCardID;
 DWORD dwCardNameSize;
 DWORD dwCardNameOffset;
 DWORD dwCardNumberDigits;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;

dwCallFeatures (continued) For Park DNs:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

tStateEntryTime For All Devices:
The Coordinated Universal Time at which the
current call state was entered.

Members Values
2-133
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
 DWORD dwInternationalRuleOffset;
 DWORD dwOptions;
} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

dwPermanentCardID

The permanent identifier that identifies the card.

dwCardNameSize

dwCardNameOffset

Contains a null-terminated string (size includes the NULL) that describes the
card in a user-friendly manner.

dwCardNumberDigits

The number of digits in the existing card number. The card number itself does
not get returned for security reasons (TAPI stores it in scrambled form). The
application can use this parameter to insert filler bytes into a text control in
"password" mode to show that a number exists.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The offset, in bytes, from the beginning of the LINETRANSLATECAPS
structure and the total number of bytes in the dialing rule defined for calls to
numbers in the same area code. The rule specifies a null-terminated string.

dwLongDistanceRuleSize

dwLongDistanceRuleOffset

The offset, in bytes, from the beginning of the LINETRANSLATECAPS
structure and the total number of bytes in the dialing rule that is defined for
calls to numbers in the other areas in the same country or region. The rule
specifies a null-terminated string.

dwInternationalRuleSize

dwInternationalRuleOffset

The offset, in bytes, from the beginning of the LINETRANSLATECAPS
structure and the total number of bytes in the dialing rule that is defined for
calls to numbers in other countries/regions. The rule specifies a
null-terminated string.
2-134
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwOptions

Indicates other settings that are associated with this calling card, using the
LINECARDOPTION_

LINECOUNTRYENTRY

Description

The LINECOUNTRYENTRY structure provides the information for a single
country entry. An array of one or more of these structures makes up part of the
LINECOUNTRYLIST structure that the lineGetCountry function returns.

Note You must not extend his structure.

Structure Details

typedef struct linecountryentry_tag {
 DWORD dwCountryID;
 DWORD dwCountryCode;
 DWORD dwNextCountryID;
 DWORD dwCountryNameSize;
 DWORD dwCountryNameOffset;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members

dwCountryID
2-135
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
The country or region identifier of the entry. The country or region identifier
specifies an internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example, all countries
in North America and the Caribbean share country code 1 but require separate
entries in the list).

dwCountryCode

The actual country code of the country or region that the entry represents (that
is, the digits that would be dialed in an international call). Only this value
should ever display to users (country identifiers should never display, as they
could be confusing).

dwNextCountryID

The country identifier of the next entry in the country or region list. Because
country codes and identifiers are not assigned in any regular numeric
sequence, the country or region list represents a single linked list, with each
entry pointing to the next. The last country or region in the list has a
dwNextCountryID value of zero. When the LINECOUNTRYLIST structure
is used to obtain the entire list, the entries in the list appear in sequence as
linked by their dwNextCountryID members.

dwCountryNameSize

dwCountryNameOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINECOUNTRYLIST structure of a null-terminated string that gives the
name of the country or region.

dwSameAreaRuleSize

dwSameAreaRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINECOUNTRYLIST structure of a null-terminated string that contains the
dialing rule for direct-dialed calls to the same area code.

dwLongDistanceRuleSize

dwLongDistanceRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINECOUNTRYLIST structure of a null-terminated string that contains the
dialing rule for direct-dialed calls to other areas in the same country or region.

dwInternationalRuleSize
2-136
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwInternationalRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINECOUNTRYLIST structure of a null-terminated string that contains the
dialing rule for direct-dialed calls to other countries/regions.

LINECOUNTRYLIST

Description

The LINECOUNTRYLIST structure describes a list of countries/regions. This
structure can contain an array of LINECOUNTRYENTRY structures. The
lineGetCountry function returns LINECOUNTRYLIST.

Note You must not extend this structure.

Structure Details

typedef struct linecountrylist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumCountries;
 DWORD dwCountryListSize;
 DWORD dwCountryListOffset;
} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Members

dwTotalSize

The total size, in bytes, that are allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize
2-137
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
The size, in bytes, of the portion of this data structure that contains useful
information.

dwNumCountries

The number of LINECOUNTRYENTRY structures that are present in the
array dwCountryListSize and dwCountryListOffset dominate.

dwCountryListSize

dwCountryListOffset

The size, in bytes, and the offset, in bytes, from the beginning of this data
structure of an array of LINECOUNTRYENTRY elements that provide the
information on each country or region.
2-138
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEDEVCAPS

Members Values

dwProviderInfoSize
dwProviderInfoOffset

For All Devices:
The size, in bytes, of the variably sized field that
contains service provider information and the offset,
in bytes, from the beginning of this data structure.
The dwProviderInfoSize/Offset member provides
information about the provider hardware and/or
software. This information can prove useful when a
user needs to call customer service with problems
regarding the provider. The CiscoTSP sets this field
to "CiscoTSPxxx.TSP: Cisco IP PBX Service
Provider Ver. x.x(x.x)" where the text before the
colon specifies the file name of the TSP and the text
after "Ver." specifies the version of the TSP.

dwSwitchInfoSize
dwSwitchInfoOffset

For All Devices:
The size, in bytes, of the variably sized device field
that contains switch information and the offset, in
bytes, from the beginning of this data structure. The
dwSwitchInfoSize/Offset member provides
information about the switch to which the line device
connects, such as the switch manufacturer, the model
name, the software version, and so on. This
information can prove useful when a user needs to
call customer service with problems regarding the
switch. The CiscoTSP sets this field to "Cisco
CallManager Ver. x.x(x.x), Cisco CTI Manager Ver
x.x(x.x)" where the text after "Ver." specifies the
version of the Cisco CallManager and the version of
the CTI Manager, respectively.
2-139
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwPermanentLineID For All Devices:
The permanent DWORD identifier by which the line
device is known in the system's configuration. This
identifier specifies a permanent name for the line
device. This permanent name (as opposed to
dwDeviceID) does not change as lines are added or
removed from the system and persists through
operating system upgrades. You can therefore use it
to link line-specific information in .ini files (or other
files) in a way that is not affected by adding or
removing other lines or by changing the operating
system.

dwLineNameSize
dwLineNameOffset

For All Devices:
The size, in bytes, of the variably sized device field
that contains a user-configurable name for this line
device, and the offset, in bytes, from the beginning of
this data structure. You can configure this name
when configuring the line device service provider,
and the name gets provided for the user's
convenience. The CiscoTSP sets this field to “Cisco
Line: [deviceName] (dirn)” where deviceName
specifies the name of the device on which the line
resides, and dirn specifies the directory number for
the device.

dwStringFormat For All Devices:
STRINGFORMAT_ASCII

dwAddressModes For All Devices:
LINEADDRESSMODE_ADDRESSID

dwNumAddresses For All Devices:
1

dwBearerModes For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwMaxRate For All Devices:
0

Members Values
2-140
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwGenerateToneModes For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINETONEMODE_BEEP

For CTI Route Points (without media) and Park DNs:
0

dwGenerateToneMaxNumFreq For All Devices:
0

dwGenerateDigitModes For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINETONEMODE_DTMF

For CTI Route Points and Park DNs:
0

dwMonitorToneMaxNumFreq For All Devices:
0

dwMonitorToneMaxNumEntries For All Devices:
0

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINETONEMODE_DTMF

For CTI Route Points (without media) and Park DNs:
0

dwGatherDigitsMinTimeout
dwGatherDigitsMaxTimeout

For All Devices:
0

dwMedCtlDigitMaxListSize
dwMedCtlMediaMaxListSize
dwMedCtlToneMaxListSize
dwMedCtlCallStateMaxListSize

For All Devices:
0

Members Values
2-141
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwDevCapFlags For IP Phones:
0

For All Other Devices:
LINEDEVCAPFLAGS_CLOSEDROP

dwMaxNumActiveCalls For All Devices:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco CallManager Administration configuration

dwAnswerMode For IP Phones (except for VG248 and ATA186), CTI
Route Points (with media) and CTI Ports:
LINEANSWERMODE_HOLD

For VG248 devices, ATA186 devices, CTI Route
Points (without media), and Park DNs:
0

dwRingModes For All Devices:
1

Members Values
2-142
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwLineStates For IP Phones, CTI Ports, and Route Points (with
media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_MSGWAITOFF
LINEDEVSTATE_MSGWAITON
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For CTI Route Points (without media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_TRANSLATECHANGE

dwUUIAcceptSize For All Devices:
0

dwUUIAnswerSize For All Devices:
0

dwUUIMakeCallSize For All Devices:
0

Members Values
2-143
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwUUIDropSize For All Devices:
0

dwUUISendUserUserInfoSize For All Devices:
0

dwUUICallInfoSize For All Devices:
0

MinDialParams
MaxDialParams

For All Devices:
0

DefaultDialParams For All Devices:
0

dwNumTerminals For All Devices:
0

dwTerminalCapsSize
dwTerminalCapsOffset

For All Devices:
0

dwTerminalTextEntrySize For All Devices:
0

dwTerminalTextSize
dwTerminalTextOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices (except ParkDNs):
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags = 0

For Park DNs:
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_PARKDN

Members Values
2-144
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwSettableDevStatus For All Devices:
0

dwDeviceClassesSize
dwDeviceClassesOffset

For IP Phones and CTI Route Points:
"tapi/line"
"tapi/phone"

For CTI Ports:
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

PermanentLineGuid The GUID that is permanently associated with the
line device.

Members Values
2-145
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEDEVSTATUS

Members Values

dwNumOpens For All Devices:
The number of active opens on the line device.

dwOpenMediaModes For All Devices:
Bit array that indicates for which media types the line
device is currently open.

dwNumActiveCalls For All Devices:
The number of calls on the line in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the line in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the line in the
onholdpendingtransfer or onholdpendingconference
state.

dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points
(with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwNumCallCompletions For All Devices:
0

dwRingMode For All Devices:
0

2-146
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwSignalLevel For All Devices:
0

dwBatteryLevel For All Devices:
0

dwRoamMode For All Devices:
0

dwDevStatusFlags For IP Phones and CTI Ports:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE
LINEDEVSTATUSGLAGS_MSGWAIT

For CTI Route Points and Park DNs:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwAvailableMediaModes For All Devices:
0

dwAppInfoSize
dwAppInfoOffset

For All Devices:
Length, in bytes, and offset from the beginning of
LINEDEVSTATUS of an array of LINEAPPINFO
structures. The dwNumOpens member indicates the
number of elements in the array. Each element in the
array identifies an application that has the line open.

Members Values
2-147
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEEXTENSIONID

LINEFORWARD

Description

The LINEFORWARD structure describes an entry of the forwarding instructions.

Structure Details

typedef struct lineforward_tag {
 DWORD dwForwardMode;
 DWORD dwCallerAddressSize;
 DWORD dwCallerAddressOffset;
 DWORD dwDestCountryCode;
 DWORD dwDestAddressSize;
 DWORD dwDestAddressOffset;
} LINEFORWARD, FAR *LPLINEFORWARD;

Members Values

dwExtensionID0 For All Devices:
0x8EBD6A50

dwExtensionID1 For All Devices:
0x128011D2

dwExtensionID2 For All Devices:
0x905B0060

dwExtensionID3 For All Devices:
0xB03DD275
2-148
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Members

dwForwardMode

The types of forwarding. The dwForwardMode member can have only a
single bit set. This member uses the following LINEFORWARDMODE_
constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their origin. Use this value
when unconditional forwarding for internal and external calls cannot be
controlled separately. Unconditional forwarding overrides forwarding on
busy and/or no-answer conditions.

Note LINEFORWARDMODE_UNCOND is the only forward mode that CiscoTSP
supports.

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value when unconditional
forwarding for internal and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value when unconditional
forwarding for internal and external calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use this value when
forwarding for internal and external calls both on busy and on no answer
cannot be controlled separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when forwarding for internal
and external calls on busy and on no answer can be controlled separately.
2-149
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when forwarding for
internal and external calls on busy and on no answer can be controlled
separately.

LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified address (selective call
forwarding).

LINEFORWARDMODE_NOANSW

Forward all calls on no answer, irrespective of their origin. Use this value
when call forwarding for internal and external calls on no answer cannot be
controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value when forwarding for
internal and external calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value when forwarding for
internal and external calls on no answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on no answer (selective
call forwarding).

LINEFORWARDMODE_BUSYNA

Forward all calls on busy or no answer, irrespective of their origin. Use this
value when forwarding for internal and external calls on both busy and on no
answer cannot be controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy or no answer. Use this value when call
forwarding on busy and on no answer cannot be controlled separately for
internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy or no answer. Use this value when call
forwarding on busy and on no answer cannot be controlled separately for
internal calls.
2-150
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy or no answer all calls that originated at a specified address
(selective call forwarding).

LINEFORWARDMODE_UNKNOWN

Calls get forwarded, but the conditions under which forwarding occurs are
not known at this time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which forwarding occurs are
not known and are never known by the service provider.

dwCallerAddressSize

dwCallerAddressOffset

The size in bytes of the variably sized address field that contains the address
of a caller to be forwarded and the offset in bytes from the beginning of the
containing data structure. The dwCallerAddressSize/Offset member gets set
to zero if dwForwardMode is not one of the following choices:
LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSYSPECIFIC.

dwDestCountryCode

The country code of the destination address to which the call is to be
forwarded.

dwDestAddressSize

dwDestAddressOffset

The size in bytes of the variably sized address field that contains the address
of the address where calls are to be forwarded and the offset in bytes from the
beginning of the containing data structure.

LINEFORWARDLIST

Description

The LINEFORWARDLIST structure describes a list of forwarding instructions.
2-151
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Structure Details

typedef struct lineforwardlist_tag {
 DWORD dwTotalSize;

 DWORD dwNumEntries;
 LINEFORWARD ForwardList[1];
} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

Members

dwTotalSize

The total size in bytes of the data structure.

dwNumEntries

Number of entries in the array that is specified as ForwardList[].

ForwardList[]

An array of forwarding instruction. The array entries specify type
LINEFORWARD.

LINEGENERATETONE

Description

The LINEGENERATETONE structure contains information about a tone to be
generated. The lineGenerateTone and TSPI_lineGenerateTone functions use this
structure.

Note You must not extend his structure.

This structure gets used only for the generation of tones; it does not get used for
tone monitoring.

Structure Details

typedef struct linegeneratetone_tag {
2-152
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
 DWORD dwFrequency;
 DWORD dwCadenceOn;
 DWORD dwCadenceOff;
 DWORD dwVolume;
} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

Members

dwFrequency

The frequency, in hertz, of this tone component. A service provider may
adjust (round up or down) the frequency that the application specified to fit
its resolution.

dwCadenceOn

The "on" duration, in milliseconds, of the cadence of the custom tone to be
generated. Zero means no tone gets generated.

dwCadenceOff

The "off" duration, in milliseconds, of the cadence of the custom tone to be
generated. Zero means no off time, that is, a constant tone.

dwVolume

The volume level at which the tone gets generated. A value of 0x0000FFFF
represents full volume, and a value of 0x00000000 means silence.

LINEINITIALIZEEXPARAMS

Description

The LINEINITIZALIZEEXPARAMS structure describes parameters that are
supplied when calls are made using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;
2-153
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;

 DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwOptions

One of the LINEINITIALIZEEXOPTION_ Constants. Specifies the event
notification mechanism that the application wants to use.

hEvent

If dwOptions specifies LINEINITIALIZEEXOPTION_USEEVENT, TAPI
returns the event handle in this field.

hCompletionPort

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field the handle of an existing completion port that was
opened using CreateIoCompletionPort.
2-154
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwCompletionKey

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the application
must specify in this field a value that is returned through the
lpCompletionKey parameter of GetQueuedCompletionStatus to identify the
completion message as a telephony message.

Further Details

See “lineInitializeEx” for further information on these options.

LINELOCATIONENTRY

Description

The LINELOCATIONENTRY structure describes a location that is used to
provide an address translation context. The LINETRANSLATECAPS structure
can contain an array of LINELOCATIONENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct linelocationentry_tag {
 DWORD dwPermanentLocationID;
 DWORD dwLocationNameSize;
 DWORD dwLocationNameOffset;
 DWORD dwCountryCode;
 DWORD dwCityCodeSize;
 DWORD dwCityCodeOffset;
 DWORD dwPreferredCardID;
 DWORD dwLocalAccessCodeSize;
 DWORD dwLocalAccessCodeOffset;
 DWORD dwLongDistanceAccessCodeSize;
 DWORD dwLongDistanceAccessCodeOffset;
 DWORD dwTollPrefixListSize;
 DWORD dwTollPrefixListOffset;
 DWORD dwCountryID;
2-155
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
 DWORD dwOptions;
 DWORD dwCancelCallWaitingSize;
 DWORD dwCancelCallWaitingOffset;
} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members

dwPermanentLocationID

The permanent identifier that identifies the location.

dwLocationNameSize

dwLocationNameOffset

Contains a null-terminated string (size includes the NULL) that describes the
location in a user-friendly manner.

dwCountryCode

The country code of the location.

dwPreferredCardID

The preferred calling card when dialing from this location.

dwCityCodeSize

dwCityCodeOffset

Contains a null-terminated string that specifies the city or area code that is
associated with the location (the size includes the NULL). Applications can
use this information, along with the country code, to “default" entry fields for
the user when you enter the phone numbers, to encourage the entry of proper
canonical numbers.

dwLocalAccessCodeSize

dwLocalAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a null-terminated string that contains
the access code to be dialed before calls to addresses in the local calling area.
2-156
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwLongDistanceAccessCodeSize

dwLongDistanceAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a null-terminated string that contains
the access code to be dialed before calls to addresses outside the local calling
area.

dwTollPrefixListSize

dwTollPrefixListOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a null-terminated string that contains
the toll prefix list for the location. The string contains only prefixes that
consist of the digits "0" through "9" and are separated from each other by a
single "," (comma) character.

dwCountryID

The country identifier of the country or region that is selected for the location.
Use this identifier with the lineGetCountry function to obtain additional
information about the specific country or region, such as the country or region
name (the dwCountryCode member cannot be used for this purpose because
country codes are not unique).

dwOptions

Indicates options in effect for this location with values taken from the
LINELOCATIONOPTION_ Constants.

dwCancelCallWaitingSize

dwCancelCallWaitingOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a null-terminated string that contains
the dial digits and modifier characters that should be prefixed to the dialable
string (after the pulse/tone character) when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit in the
dwTranslateOptions parameter of lineTranslateAddress. If no prefix is
defined, dwCancelCallWaitingSize being set to zero may indicate this, or it
being set to 1 and dwCancelCallWaitingOffset pointing to an empty string
(single NULL byte) may indicate this.
2-157
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINEMESSAGE

Description

The LINEMESSAGE structure contains parameter values that specify a change in
status of the line that the application currently has open. The lineGetMessage
function returns the LINEMESSAGE structure.

Structure Details

typedef struct linemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} LINEMESSAGE, FAR *LPLINEMESSAGE;

Members

hDevice

A handle to either a line device or a call. The context that is provided by
dwMessageID can determine the nature of this handle (line handle or call
handle).

dwMessageID

A line or call device message.

dwCallbackInstance

Instance data passed back to the application, which the application in the
dwCallBackInstance parameter of lineInitializeEx specified. TAPI does not
interpret this DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.
2-158
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwParam3

A parameter for the message.

Further Details

For details about the parameter values that are passed in this structure, see “TAPI
Line Messages.”

LINEMONITORTONE

Description

The LINEMONITORTONE structure defines a tone for the purpose of detection.
Use this as an entry in an array. An array of tones gets passed to the
lineMonitorTones function that monitors these tones and sends a
LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can
thus monitor the call information stream for silence.

Note You must not extend this structure.

Structure Details

typedef struct linemonitortone_tag {
 DWORD dwAppSpecific;
 DWORD dwDuration;
 DWORD dwFrequency1;
 DWORD dwFrequency2;
 DWORD dwFrequency3;
} LINEMONITORTONE, FAR *LPLINEMONITORTONE;
2-159
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Members

dwAppSpecific

Used by the application for tagging the tone. When this tone is detected, the
value of the dwAppSpecific member gets passed back to the application.

dwDuration

The duration, in milliseconds, during which the tone should be present before
a detection is made.

dwFrequency1

dwFrequency2

dwFrequency3

The frequency, in hertz, of a component of the tone. If fewer than three
frequencies are needed in the tone, a value of 0 should be used for the unused
frequencies. A tone with all three frequencies set to zero gets interpreted as
silence and can be used for silence detection.

LINEPROVIDERENTRY

Description

The LINEPROVIDERENTRY structure provides the information for a single
service provider entry. An array of these structures gets returned as part of the
LINEPROVIDERLIST structure that the function lineGetProviderList returns.

Note You cannot extend this structure.

Structure Details

typedef struct lineproviderentry_tag {
 DWORD dwPermanentProviderID;
 DWORD dwProviderFilenameSize;
 DWORD dwProviderFilenameOffset;
} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;
2-160
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Members

dwPermanentProviderID

The permanent provider identifier of the entry.

dwProviderFilenameSize

dwProviderFilenameOffset

The size, in bytes, and the offset, in bytes, from the beginning of the
LINEPROVIDERLIST structure of a null-terminated string that contains the
filename (path) of the service provider DLL (.TSP) file.

LINEPROVIDERLIST

Description

The LINEPROVIDERLIST structure describes a list of service providers. The
lineGetProviderList function returns a structure of this type. The
LINEPROVIDERLIST structure can contain an array of
LINEPROVIDERENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct lineproviderlist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
DWORD dwNumProviders;
 DWORD dwProviderListSize;
 DWORD dwProviderListOffset;
} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;
2-161
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Members

dwTotalSize

The total size, in bytes, that are allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwNumProviders

The number of LINEPROVIDERENTRY structures that are present in the
array that is denominated by dwProviderListSize and dwProviderListOffset.

dwProviderListSize

dwProviderListOffset

The size, in bytes, and the offset, in bytes, from the beginning of this data
structure of an array of LINEPROVIDERENTRY elements, which provide
the information on each service provider.

LINEREQMAKECALL

Description

The LINEREQMAKECALL structure describes a request that is initiated by a call
to the lineGetRequest function.

Note You cannot extend this structure.

Structure Details

typedef struct linereqmakecall_tag {
 char szDestAddress[TAPIMAXDESTADDRESSSIZE];
 char szAppName[TAPIMAXAPPNAMESIZE];
2-162
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
 char szCalledParty[TAPIMAXCALLEDPARTYSIZE];
 char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

Members

szDestAddress[TAPIMAXADDRESSSIZE]

The null-terminated destination address of the make-call request. The address
uses the canonical address format or the dialable address format. The
maximum length of the address specifies TAPIMAXDESTADDRESSSIZE
characters, which include the NULL terminator. Longer strings get truncated.

szAppName[TAPIMAXAPPNAMESIZE]

The null-terminated, user-friendly application name or filename of the
application that originated the request. The maximum length of the address
specifies TAPIMAXAPPNAMESIZE characters, which include the NULL
terminator.

szCalledParty[TAPIMAXCALLEDPARTYSIZE]

The null-terminated, user-friendly called-party name. The maximum length
of the called-party information specifies TAPIMAXCALLEDPARTYSIZE
characters, which include the NULL terminator.

szComment[TAPIMAXCOMMENTSIZE]

The null-terminated comment about the call request. The maximum length of
the comment string specifies TAPIMAXCOMMENTSIZE characters, which
include the NULL terminator.

LINETRANSLATECAPS

Description

The LINETRANSLATECAPS structure describes the address translation
capabilities. This structure can contain an array of LINELOCATIONENTRY
structures and an array of LINECARDENTRY structures. the
lineGetTranslateCaps function returns the LINETRANSLATECAPS structure.
2-163
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
Note You must not extend this structure.

Structure Details

typedef struct linetranslatecaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumLocations;
 DWORD dwLocationListSize;
 DWORD dwLocationListOffset;
 DWORD dwCurrentLocationID;
 DWORD dwNumCards;
 DWORD dwCardListSize;
 DWORD dwCardListOffset;
 DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwNumLocations

The number of entries in the location list. It includes all locations that are
defined, including zero (default).
2-164
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwLocationListSize

dwLocationListOffset

List of locations that are known to the address translation. The list comprises
a sequence of LINELOCATIONENTRY structures. The
dwLocationListOffset member points to the first byte of the first
LINELOCATIONENTRY structure, and the dwLocationListSize member
indicates the total number of bytes in the entire list.

dwCurrentLocationID

The dwPermanentLocationID member from the LINELOCATIONENTRY
structure for the CurrentLocation.

dwNumCards

The number of entries in the CardList.

dwCardListSize

dwCardListOffset

List of calling cards that are known to the address translation. It includes only
non-hidden card entries and always includes card 0 (direct dial). The list
comprises a sequence of LINECARDENTRY structures. The
dwCardListOffset member points to the first byte of the first
LINECARDENTRY structure, and the dwCardListSize member indicates the
total number of bytes in the entire list.

dwCurrentPreferredCardID

The dwPreferredCardID member from the LINELOCATIONENTRY
structure for the CurrentLocation.
2-165
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
LINETRANSLATEOUTPUT

Description

The LINETRANSLATEOUTPUT structure describes the result of an address
translation. The lineTranslateAddress function uses this structure.

Note You must not extend this structure.

Structure Details

typedef struct linetranslateoutput_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwDialableStringSize;
 DWORD dwDialableStringOffset;
 DWORD dwDisplayableStringSize;
 DWORD dwDisplayableStringOffset;
 DWORD dwCurrentCountry;
 DWORD dwDestCountry;
 DWORD dwTranslateResults;
} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.
2-166
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Line Structures
dwDialableStringSize

dwDialableStringOffset

Contains the translated output that can be passed to the lineMakeCall,
lineDial, or other function that requires a dialable string. The output always
comprises a null-terminated string (NULL gets included in the count in
dwDialableStringSize). This output string includes ancillary fields such as
name and subaddress if they were in the input string. This string may contain
private information such as calling card numbers. To prevent inadvertent
visibility to unauthorized persons, it should not display to the user.

dwDisplayableStringSize

dwDisplayableStringOffset

Contains the translated output that can display to the user for confirmation.
Identical to DialableString, except the “friendly name” of the card enclosed
within bracket characters (for example, “[AT&T Card]”) replaces calling card
digits. The ancillary fields, such as name and subaddress, get removed. You
can display this string in call-status dialog boxes without exposing private
information to unauthorized persons. You can also include this information in
call logs.

dwCurrentCountry

Contains the country code that is configured in CurrentLocation. Use this
value to control the display by the application of certain user interface
elements for local call progress tone detection and for other purposes.

dwDestCountry

Contains the destination country code of the translated address. This value
may pass to the dwCountryCode parameter of lineMakeCall and other dialing
functions (so the call progress tones of the destination country or region such
as a busy signal are properly detected). This field gets set to zero if the
destination address that is passed to lineTranslateAddress is not in canonical
format.

dwTranslateResults

Indicates the information that is derived from the translation process, which
may assist the application in presenting user-interface elements. This field
uses one LINETRANSLATERESULT_.
2-167
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
TAPI Phone Functions
TAPI phone functions enable an application to control physical aspects of a phone

Table 2-4 TAPI Phone Functions

TAPI Phone Functions

phoneCallbackFunc

phoneClose

phoneDevSpecific

phoneGetDevCaps

phoneGetDisplay

phoneGetLamp

phoneGetMessage

phoneGetRing

phoneGetStatus

phoneGetStatusMessages

phoneInitialize

phoneInitializeEx

phoneNegotiateAPIVersion

phoneOpen

phoneSetDisplay

phoneSetLamp

phoneSetStatusMessages

phoneShutdown
2-168
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
phoneCallbackFunc

Description

The phoneCallbackFunc function provides a placeholder for the
application-supplied function name.

All callbacks occur in the application context. The callback function must reside
in a dynamic-link library (DLL) or application module and be exported in the
module-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc(
 HANDLE hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters

hDevice

A handle to a phone device that is associated with the callback.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data passed to the application in the callback. TAPI does
not interpret this DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3
2-169
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback
function, see “TAPI Line Messages” and “TAPI Phone Messages.”

phoneClose

Description

The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose(
 HPHONE hPhone
);

Parameter

hPhone

A handle to the open phone device that is to be closed. If the function
succeeds, the handle is no longer valid.

phoneDevSpecific

Description

The phoneDevSpecific function gets used as a general extension mechanism to
enable a Telephony API implementation to provide features that are not described
in the other TAPI functions. The meanings of these extensions are device specific.

When used with the CiscoTSP, phoneDevSpecific can be used to send device
specific data to a phone device.
2-170
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize

);

Parameter

hPhone

A handle to a phone device.

lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation
is device specific. The contents of the parameter block are passed unchanged
to or from the service provider by TAPI.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps

Description

The phoneGetDevCaps function queries a specified phone device to determine its
telephony capabilities.

Function Details

LONG phoneGetDevCaps(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPPHONECAPS lpPhoneCaps
);
2-171
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Parameters

hPhoneApp

The handle to the registration with TAPI for this application.

dwDeviceID

The phone device that is to be queried.

dwAPIVersion

The version number of the Telephony API that is to be used. The high-order
word contains the major version number; the low-order word contains the
minor version number. This number is obtained with the function
phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used.
This number is obtained with the function phoneNegotiateExtVersion. It can
be left zero if no device-specific extensions are to be used. Otherwise, the
high-order word contains the major version number; the low-order word
contains the minor version number.

lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful
completion of the request, this structure is filled with phone device
capabilities information.

phoneGetDisplay

Description

The phoneGetDisplay function returns the current contents of the specified phone
display.

Function Details

LONG phoneGetDisplay(
 HPHONE hPhone,
 LPVARSTRING lpDisplay
);
2-172
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Parameters

hPhone

A handle to the open phone device.

lpDisplay

A pointer to the memory location where the display content is to be stored, of
type VARSTRING.

phoneGetLamp

Description

The phoneGetLamp function returns the current lamp mode of the specified lamp.

Note This function is not supported on Cisco 79xx IP Phones.

Function Details

LONG phoneGetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPDWORD lpdwLampMode
);

Parameters

hPhone

A handle to the open phone device.

dwButtonLampID

The identifier of the lamp that is to be queried. See Table 2-7, “Phone Button
Values” for lamp IDs.
2-173
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
lpdwLampMode

Note This function is not supported on Cisco 79xx IP Phones.

A pointer to a memory location that holds the lamp mode status of the given
lamp. The lpdwLampMode parameter can have at most one bit set. This
parameter uses the following PHONELAMPMODE_ constants:

– PHONELAMPMODE_FLASH - Flash means slow on and off.

– PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

– PHONELAMPMODE_OFF - The lamp is off.

– PHONELAMPMODE_STEADY - The lamp is continuously lit.

– PHONELAMPMODE_WINK - The lamp is winking.

– PHONELAMPMODE_UNKNOWN - The lamp mode is currently
unknown.

– PHONELAMPMODE_DUMMY - Use this value to describe a
button/lamp position that has no corresponding lamp.

phoneGetMessage

Description

The phoneGetMessage function returns the next TAPI message that is queued for
delivery to an application that is using the Event Handle notification mechanism
(see phoneInitializeEx for further details).

Function Details

LONG WINAPI phoneGetMessage(
 HPHONEAPP hPhoneApp,
 LPPHONEMESSAGE lpMessage,
 DWORD dwTimeout
);
2-174
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Parameters

hPhoneApp

The handle that phoneInitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions
member of the PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this
function, the structure contains the next message that had been queued for
delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval
elapses, even if no message can be returned. If dwTimeout is zero, the
function checks for a queued message and returns immediately. If dwTimeout
is INFINITE, the time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM.

phoneGetRing

Description

The phoneGetRing function enables an application to query the specified open
phone device as to its current ring mode.
2-175
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Function Details

LONG phoneGetRing(
 HPHONE hPhone,
 LPDWORD lpdwRingMode,
 LPDWORD lpdwVolume
);

Parameters

hPhone

A handle to the open phone device.

lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the
phone is not ringing.

The system supports four ring modes.

Table 2-5 lists the valid ring modes.

lpdwVolume

The volume level with which the phone is ringing. This parameter has no
meaning, the value 0x8000 always gets returned.

Table 2-5 Ring Modes

Ring Modes Definition

0 Off

1 Inside Ring

2 Outside Ring

3 Feature Ring
2-176
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
phoneGetStatus

Description

The phoneGetStatus function enables an application to query the specified open
phone device for its overall status.

Function Details

LONG WINAPI phoneGetStatusMessages(
HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
) ;

Parameters

hPhone

A handle to the open phone device to be queried.

lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which
is loaded with the returned information about the phone's status.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Return values include the following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM
PHONEERR_INVALPOINTER, PHONEERR_RESOURCEUNAVAIL
PHONEERR_OPERATIONFAILED, PHONEERR_STRUCTURETOOSMALL
PHONEERR_OPERATIONUNAVAIL, PHONEERR_UNINITIALIZED
2-177
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
phoneGetStatusMessages

Description

The phoneGetStatusMessages function returns which phone-state changes on the
specified phone device generate a callback to the application.

An application can use phoneGetStatusMessages to query the generation of the
corresponding messages. The phoneSetStatusMessages can control Message
generation. All phone status messages remain disabled by default.

Function Details

LONG WINAPI phoneGetStatusMessages(
 HPHONE hPhone,
 LPDWORD lpdwPhoneStates,
 LPDWORD lpdwButtonModes,
 LPDWORD lpdwButtonStates
);

Parameters

hPhone

A handle to the open phone device that is to be monitored.

lpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE_
Constants. These flags specify the set of phone status changes and events for
which the application can receive notification messages. Monitoring can be
individually enabled and disabled for the following:

– PHONESTATE_OTHER

– PHONESTATE_CONNECTED

– PHONESTATE_DISCONNECTED

– PHONESTATE_OWNER

– PHONESTATE_MONITORS

– PHONESTATE_DISPLAY
2-178
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
– PHONESTATE_LAMP

– PHONESTATE_RINGMODE

– PHONESTATE_RINGVOLUME

– PHONESTATE_HANDSETHOOKSWITCH

– PHONESTATE_HANDSETVOLUME

– PHONESTATE_HANDSETGAIN

– PHONESTATE_SPEAKERHOOKSWITCH

– PHONESTATE_SPEAKERVOLUME

– PHONESTATE_SPEAKERGAIN

– PHONESTATE_HEADSETHOOKSWITCH

– PHONESTATE_HEADSETVOLUME

– PHONESTATE_HEADSETGAIN

– PHONESTATE_SUSPEND

– PHONESTATE_RESUMEF

– PHONESTATE_DEVSPECIFIC

– PHONESTATE_REINIT

– PHONESTATE_CAPSCHANGE

– PHONESTATE_REMOVED

lpdwButtonModes

A pointer to a DWORD that contains flags that specify the set of
phone-button modes for which the application can receive notification
messages. This parameter uses zero, one or more of the
PHONEBUTTONMODE_ Constants.

lpdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button
state changes for which the application can receive notification messages.
This parameter uses zero, one or more of the PHONEBUTTONSTATE_
Constants.
2-179
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM,
PHONEERR_INVALPOINTER, PHONEERR_RESOURCEUNAVAIL,
PHONEERR_OPERATIONFAILED, PHONEERR_UNINITIALIZED.

phoneInitialize

Description

Although the phoneInitialize function is obsolete, tapi.dll and tapi32.dll continues
to export it for backward compatibility with applications that are using TAPI
versions 1.3 and 1.4.

Function Details

LONG WINAPI phoneInitialize(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for
TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and
events on the phone device.
2-180
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
lpszAppName

A pointer to a null-terminated string that contains displayable characters. If
this parameter is non-NULL, it contains an application-supplied name of the
application. This name, which is provided in the PHONESTATUS structure,
indicates, in a user-friendly way, which application is the current owner of the
phone device. You can use this information for logging and status reporting
purposes. If lpszAppName is NULL, the application filename gets used
instead.

lpdwNumDevs

A pointer to DWORD. This location gets loaded with the number of phone
devices that are available to the application.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALAPPNAME, PHONEERR_INIFILECORRUPT,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM,
PHONEERR_OPERATIONFAILED, PHONEERR_REINIT,
PHONEERR_RESOURCEUNAVAIL, PHONEERR_NODEVICE,
PHONEERR_NODRIVER, PHONEERR_INVALPARAM

phoneInitializeEx

Description

The phoneInitializeEx function initializes the application use of TAPI for
subsequent use of the phone abstraction. It registers the application specified
notification mechanism and returns the number of phone devices that are available
to the application. A phone device represents any device that provides an
implementation for the phone-prefixed functions in the Telephony API.
2-181
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Function Details

LONG WINAPI phoneInitializeEx(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for
TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL
can pass NULL for this parameter, in which case TAPI uses the module
handle of the root executable of the process.

lpfnCallback

The address of a callback function that is invoked to determine status and
events on the line device, addresses, or calls, when the application is using the
"hidden window" method of event notification (for more information see
phoneCallbackFunc). When the application chooses to use the "event handle"
or "completion port" event notification mechanisms, this parameter gets
ignored and should be set to NULL.

lpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable
characters. If this parameter is not NULL, it contains an application-supplied
name for the application. This name, which is provided in the
PHONESTATUS structure, indicates, in a user-friendly way, which
application has ownership of the phone device. If lpszFriendlyAppName is
NULL, the application module filename gets used instead (as returned by the
Windows function GetModuleFileName).
2-182
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
lpdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the
number of phone devices that are available to the application fills this
location.

lpdwAPIVersion

A pointer to a DWORD. The application must initialize this DWORD, before
calling this function, to the highest API version that it is designed to support
(for example, the same value that it would pass into dwAPIHighVersion
parameter of phoneNegotiateAPIVersion). Do no use artificially high values;
ensure the values are accurately set. TAPI translates any newer messages or
structures into values or formats that the application version supports. Upon
successful completion of this request, the highest API version that is
supported by TAPI fills this location, thereby allowing the application to
detect and adapt to having been installed on a system with an older version of
TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that
contains additional parameters that are used to establish the association
between the application and TAPI (specifically, the application selected event
notification mechanism and associated parameters).

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALAPPNAME, PHONEERR_OPERATIONFAILED,
PHONEERR_INIFILECORRUPT, PHONEERR_INVALPOINTER,
PHONEERR_REINIT, PHONEERR_NOMEM, PHONEERR_INVALPARAM.
2-183
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
phoneNegotiateAPIVersion

Description

Use the phoneNegotiateAPIVersion function to negotiate the API version number
to be used with the specified phone device. It returns the extension identifier that
the phone device supports, or zeros if no extensions are provided.

Function Details

LONG WINAPI phoneNegotiateAPIVersion(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPPHONEEXTENSIONID lpExtensionID
);

Parameters

hPhoneApp

The handle to the application registration with TAPI.

dwDeviceID

The phone device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The
high-order word represents the major version number, and the low-order word
represents the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The
high-order word represents the major version number, and the low-order word
represents the minor version number.
2-184
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
lpdwAPIVersion

A pointer to a DWORD in which the API version number that was negotiated
will be returned. If negotiation succeeds, this number ranges from
dwAPILowVersion to dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service
provider for the specified dwDeviceID parameter supports provider-specific
extensions, this structure gets filled with the extension identifier of these
extensions when negotiation succeeds. This structure contains all zeros if the
line provides no extensions. An application can ignore the returned parameter
if it does not use extensions.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED,
PHONEERR_BADDEVICEID, PHONEERR_OPERATIONUNAVAIL,
PHONEERR_NODRIVER, PHONEERR_NOMEM,
PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERS
ION, PHONEERR_UNINITIALIZED, PHONEERR_NODEVICE.

phoneOpen

Description

The phoneOpen function opens the specified phone device. The device can be
opened by using either owner privilege or monitor privilege. An application that
opens the phone with owner privilege can control the lamps, display, ringer, and
hookswitch or hookswitches that belong to the phone. An application that opens
the phone device with monitor privilege receives notification only about events
that occur at the phone, such as hookswitch changes or button presses. Because
ownership of a phone device is exclusive, only one application at a time can have
a phone device opened with owner privilege. The phone device can, however, be
opened multiple times with monitor privilege.
2-185
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Note To open a phone device on a CTI port, first ensure a corresponding line
device is open.

Function Details

LONG phoneOpen(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 LPHPHONE lphPhone,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivilege
);

Parameters

hPhoneApp

A handle by which the application is registered with TAPI.

dwDeviceID

The phone device to be opened.

lphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use
this handle to identify the device when invoking other phone control
functions.

dwAPIVersion

The API version number under which the application and Telephony API
agreed to operate. Obtain this number from phoneNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service
provider agree to operate. This number is zero if the application does not use
any extensions. Obtain this number from phoneNegotiateExtVersion.

Note The Cisco TSP does not support any phone extensions.
2-186
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
dwCallbackInstance

User instance data passed back to the application with each message. The
Telephony API does not interpret this parameter.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set.
This parameter uses the following PHONEPRIVILEGE_ constants:

– PHONEPRIVILEGE_MONITOR - An application that opens a phone
device with this privilege gets informed about events and state changes
occurring on the phone. The application cannot invoke any operations on
the phone device that would change its state.

– PHONEPRIVILEGE_OWNER - An application that opens a phone
device in this mode can change the state of the lamps, ringer, display, and
hookswitch devices of the phone. Having owner privilege to a phone
device automatically includes monitor privilege as well.

phoneSetDisplay

Description

The phoneSetDisplay function causes the specified string to display on the
specified open phone device.

Note Prior to Release 4.0, Cisco CallManager messages that were passed to the phone
would automatically overwrite any messages sent to the phone using
phoneSetDisplay(). In Cisco CallManager 4.0, the message sent to the phone in
the phoneSetDisplay() API will remain on the phone until the phone is rebooted.
If the application wants to clear the text from the display and see the
Cisco CallManager messages again, a NULL string, not spaces, should be passed
in the phoneSetDisplay() API. In other words, the lpsDisplay parameter should
be NULL and the dwSize should be set to 0.
2-187
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Function Details

LONG phoneSetDisplay(
 HPHONE hPhone,
 DWORD dwRow,
 DWORD dwColumn,
 LPCSTR lpsDisplay,
 DWORD dwSize
);

Parameters

hPhone

A handle to the open phone device. The application must be the owner of the
phone.

dwRow

The row position on the display where the new text displays.

dwColumn

The column position on the display where the new text displays.

lpsDisplay

A pointer to the memory location where the display content is stored. The
display information must have the format that is specified in the
dwStringFormat member of the device capabilities for this phone.

dwSize

The size in bytes of the information to which lpsDisplay points.

phoneSetLamp

Description

The phoneSetLamp function causes the specified lamp to be lit on the specified
open phone device in the specified lamp mode.
2-188
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
Function Details

LONG phoneSetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 DWORD dwLampMode
);

Parameters

hPhone

A handle to the open phone device. Ensure that the application is the owner
of the phone.

dwButtonLampID

The button whose lamp is to be illuminated. See “Phone Button Values”
Table 2-7 for lamp IDs.

dwLampMode

Note This function is not supported on Cisco 79xx IP Phones.

How the lamp is to be illuminated. The dwLampMode parameter can have
only a single bit set. This parameter uses the following
PHONELAMPMODE_ constants:

– PHONELAMPMODE_FLASH - Flash means slow on and off.

– PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

– PHONELAMPMODE_OFF - The lamp is off.

– PHONELAMPMODE_STEADY - The lamp is continuously on.

– PHONELAMPMODE_WINK - The lamp is winking.

– PHONELAMPMODE_DUMMY - This value describes a button/lamp
position that has no corresponding lamp.
2-189
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
phoneSetStatusMessages

Description

The phoneSetStatusMessages function enables an application to monitor the
specified phone device for selected status events.

See “TAPI Phone Messages” for supported messages.

Function Details

LONG phoneSetStatusMessages(
 HPHONE hPhone,
 DWORD dwPhoneStates,
 DWORD dwButtonModes,
 DWORD dwButtonStates
);

Parameters

hPhone

A handle to the open phone device to be monitored.

dwPhoneStates

These flags specify the set of phone status changes and events for which the
application can receive notification messages. This parameter can have zero,
one, or more bits set. This parameter uses the following PHONESTATE_
constants:

– PHONESTATE_OTHER - Phone status items other than those listed
below changed. The application should check the current phone status to
determine which items have changed.

– PHONESTATE_OWNER - The number of owners for the phone device
changed.

– PHONESTATE_MONITORS - The number of monitors for the phone
device changed.

– PHONESTATE_DISPLAY - The display of the phone changed.

– PHONESTATE_LAMP - A lamp of the phone changed.
2-190
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
– PHONESTATE_RINGMODE - The ring mode of the phone changed.

– PHONESTATE_SPEAKERHOOKSWITCH - The hookswitch state
changed for this speakerphone.

– PHONESTATE_REINIT - Items changed in the configuration of phone
devices. To become aware of these changes (as with the appearance of
new phone devices) the application should reinitialize its use of TAPI.
New phoneInitialize, phoneInitializeEx, and phoneOpen requests get
denied until applications have shut down their usage of TAPI. The
hDevice parameter of the PHONE_STATE message stays NULL for this
state change because it applies to any line in the system. Because of the
critical nature of PHONESTATE_REINIT, such messages cannot be
masked, so the setting of this bit gets ignored and the messages always
get delivered to the application.

– PHONESTATE_REMOVED - Indicates that the service provider is
removing the device from the system by the service provider (most likely
through user action, through a control panel or similar utility). A
PHONE_CLOSE message on the device immediately follows a
PHONE_STATE message with this value. Subsequent attempts to access
the device prior to TAPI being reinitialized result in
PHONEERR_NODEVICE being returned to the application. If a service
provider sends a PHONE_STATE message that contains this value to
TAPI, TAPI passes it along to applications that have negotiated TAPI
version 1.4 or later; applications that negotiated a previous TAPI version
do not receive any notification.

dwButtonModes

The set of phone-button modes for which the application can receive
notification messages. This parameter can have zero, one, or more bits set.
This parameter uses the following PHONEBUTTONMODE_ constants:

– PHONEBUTTONMODE_CALL - The button is assigned to a call
appearance.

– PHONEBUTTONMODE_FEATURE - The button is assigned to
requesting features from the switch, such as hold, conference, and
transfer.

– PHONEBUTTONMODE_KEYPAD - The button is one of the twelve
keypad buttons, ‘0’ through ‘9’, ‘*’, and ‘#’.
2-191
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Functions
– PHONEBUTTONMODE_DISPLAY - The button is a “soft” button
associated with the phone display. A phone set can have zero or more
display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive
notification messages. If the dwButtonModes parameter is zero, the system
ignores dwButtonStates. If dwButtonModes has one or more bits set, this
parameter also must have at least one bit set. This parameter uses the
following PHONEBUTTONSTATE_ constants:

– PHONEBUTTONSTATE_UP - The button is in the “up” state.

– PHONEBUTTONSTATE_DOWN - The button is in the “down” state
(pressed down).

– PHONEBUTTONSTATE_UNKNOWN - The up or down state of the
button is not known at this time but may become known at a future time.

– PHONEBUTTONSTATE_UNAVAIL - The service provider does not
know the up or down state of the button, and the state will not become
known.

phoneShutdown

Description

The phoneShutdown function shuts down the application usage of the TAPI phone
abstraction.

Note If this function is called when the application has open phone devices, these
devices are closed.

Function Details

LONG WINAPI phoneShutdown(
 HPHONEAPP hPhoneApp
);
2-192
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
Parameter

hPhoneApp

The application usage handle for TAPI.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs.
Possible return values follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM,
PHONEERR_UNINITIALIZED, PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages
Messages notify the application of asynchronous events. All messages get sent to
the application through the message notification mechanism that the application
specified in lineInitializeEx. The message always contains a handle to the relevant
object (phone, line, or call), of which the application can determine the type from
the message type.

Table 2-6 TAPI Phone Messages

TAPI Phone Messages

PHONE_BUTTON

PHONE_CLOSE

PHONE_CREATE

PHONE_REMOVE

PHONE_REPLY

PHONE_STATE
2-193
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
PHONE_BUTTON

Description

The PHONE_BUTTON message notifies the application that button press
monitoring is enabled if it has detected a button press on the local phone.

Function Details

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;
dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when opening the phone device for this
application.

dwParam1

The button/lamp identifier of the button that was pressed. Button identifiers
zero through 11 always represent the KEYPAD buttons, with ‘0’ being button
identifier zero, ‘1’ being button identifier 1 (and so on through button
identifier 9), and with ‘*’ being button identifier 10, and ‘#’ being button
identifier 11. Find additional information about a button identifier with
phoneGetDevCaps.

dwParam2

The button mode of the button. The button mode for each button ID gets listed
as “Phone Button Values”.

The TAPI service provider cannot detect button down or button up state
changes. To conform to the TAPI specification, two messages get sent
simulating a down state followed by an up state in dwparam3.
2-194
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
This parameter uses the following PHONEBUTTONMODE_ constants:

– PHONEBUTTONMODE_CALL - The button is assigned to a call
appearance.

– PHONEBUTTONMODE_FEATURE - The button is assigned to
requesting features from the switch, such as hold, conference, and
transfer.

– PHONEBUTTONMODE_KEYPAD - The button is one of the twelve
keypad buttons, ‘0’ through ‘9’, ‘*’, and ‘#’.

– PHONEBUTTONMODE_DISPLAY - The button is a “soft” button that
is associated with the phone display. A phone set can have zero or more
display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This
parameter uses the following PHONEBUTTONSTATE_ constants:

– PHONEBUTTONSTATE_UP - The button is in the “up” state.

– PHONEBUTTONSTATE_DOWN - The button is in the “down” state
(pressed down).

– PHONEBUTTONSTATE_UNKNOWN - The up or down state of the
button is not known at this time but may become known at a future time.

– PHONEBUTTONSTATE_UNAVAIL - The service provider does not
know the up or down state of the button, and the state cannot become
known at a future time.

Button ID values of zero through 11 map to the keypad buttons as defined by
TAPI. Values above 11 map to line and feature buttons. The low order part of
the DWORD specifies the feature. The high-order part of the DWORD
specifies the instance number of that feature. Table 2-7 lists all possible
values for the low order part of the DWORD corresponding to the feature.

The button ID can be made by the following expression:

ButtonID = (instance << 16) | featureID

Table 2-7 lists the valid phone button values.
2-195
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
Table 2-7 Phone Button Values

Value Feature
Has
Instance Button Mode

0 Keypad button 0 No Keypad

1 Keypad button 1 No Keypad

2 Keypad button 2 No Keypad

3 Keypad button 3 No Keypad

4 Keypad button 4 No Keypad

5 Keypad button 5 No Keypad

6 Keypad button 6 No Keypad

7 Keypad button 7 No Keypad

8 Keypad button 8 No Keypad

9 Keypad button 9 No Keypad

10 Keypad button ‘*’ No Keypad

11 Keypad button ‘#’ No Keypad

12 Last Number Redial No Feature

13 Speed Dial Yes Feature

14 Hold No Feature

15 Transfer No Feature

16 Forward All (for line one) No Feature

17 Forward Busy (for line one) No Feature

18 Forward No Answer (for line one) No Feature

19 Display No Feature

20 Line Yes Call

21 Chat (for line one) No Feature

22 Whiteboard (for line one) No Feature

23 Application Sharing (for line one) No Feature

24 T120 File Transfer (for line one) No Feature

25 Video (for line one) No Feature
2-196
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
PHONE_CLOSE

Description

The PHONE_CLOSE message gets sent when an open phone device is forcibly
closed as part of resource reclamation. The device handle is no longer valid after
this message is sent.

Function Details

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer
valid after this message is sent.

26 Voice Mail (for line one) No Feature

27 Answer Release No Feature

28 Auto-answer No Feature

44 Generic Custom Button 1 Yes Feature

45 Generic Custom Button 2 Yes Feature

46 Generic Custom Button 3 Yes Feature

47 Generic Custom Button 4 Yes Feature

48 Generic Custom Button 5 Yes Feature

Table 2-7 Phone Button Values (continued)

Value Feature
Has
Instance Button Mode
2-197
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
dwCallbackInstance

The callback instance of the application that is provided on an open phone
device.

dwParam1

Not used.

dwParam2

Not used.

dwParam3

Not used.

PHONE_CREATE

Description

The PHONE_CREATE message gets sent to inform applications of the creation
of a new phone device.

Note CTI Manager cluster support, extension mobility, change notification, and user
addition to the directory can generate PHONE_CREATE events.

Function Details

PHONE_CREATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

Not used.
2-198
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
dwCallbackInstance

Not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2

Not used.

dwParam3

Not used.

PHONE_REMOVE

Description

The PHONE_REMOVE message gets sent to inform an application of the removal
(deletion from the system) of a phone device. Generally, this method does not get
used for temporary removals, such as extraction of PCMCIA devices, but only for
permanent removals in which the device would no longer be reported by the
service provider, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user
deletion from the directory can generate PHONE_REMOVE events.

Function Details

PHONE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice
2-199
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
Reserved. Set to zero.

dwCallbackInstance

Reserved. Set to zero.

dwParam1

Identifier of the phone device that was removed.

dwParam2

Reserved. Set to zero.

dwParam3

Reserved. Set to zero.

PHONE_REPLY

Description

The TAPI PHONE_REPLY message gets sent to an application to report the
results of function call that completed asynchronously.

Function Details

PHONE_REPLY
hPhone = (HPHONE) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

hPhone

Not used.

dwCallbackInstance

Returns the application callback instance.

dwParam1
2-200
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter
into a LONG. Zero indicates success; a negative number indicates an error.

dwParam3

Not used.

PHONE_STATE

Description

TAPI sends the PHONE_STATE message to an application whenever the status of
a phone device changes.

Function Details

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device is opened for
this application.
2-201
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
dwParam1

The phone state that changed. This parameter uses the following
PHONESTATE_ constants:

– PHONESTATE_OTHER - Phone-status items other than those listed
below changed. The application should check the current phone status to
determine which items changed.

– PHONESTATE_CONNECTED - The connection between the phone
device and TAPI was just made. This happens when TAPI is first invoked
or when the wire that connects the phone to the computer is plugged in
while TAPI is active.

– PHONESTATE_DISCONNECTED - The connection between the phone
device and TAPI was just broken. This happens when the wire that
connects the phone set to the computer is unplugged while TAPI is active.

– PHONESTATE_OWNER - The number of owners for the phone device
changed.

– PHONESTATE_MONITORS - The number of monitors for the phone
device changed.

– PHONESTATE_DISPLAY - The display of the phone changed.

– PHONESTATE_LAMP - A lamp of the phone changed.

– PHONESTATE_RINGMODE - The ring mode of the phone changed.

– PHONESTATE_ HANDSETHOOKSWITCH - The hookswitch state
changed for this speakerphone.

– PHONESTATE_REINIT - Items changed in the configuration of phone
devices. To become aware of these changes (as with the appearance of
new phone devices), the application should reinitialize its use of TAPI.
The hDevice parameter of the PHONE_STATE message stays NULL for
this state change as it applies to any of the phones in the system.

– PHONESTATE_REMOVED - Indicates that the device is being removed
from the system by the service provider (most likely through user action,
through a control panel or similar utility). Normally, a PHONE_CLOSE
message on the device immediately follows a PHONE_STATE message
with this value. Subsequent attempts to access the device prior to TAPI
being reinitialized result in PHONEERR_NODEVICE being returned to
the application. If a service provider sends a PHONE_STATE message
2-202
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Messages
that contains this value to TAPI, TAPI passes it along to applications that
have negotiated TAPI version 1.4 or later; applications that negotiated a
previous API version do not receive any notification.

dwParam2

Phone state-dependent information detailing the status change. This
parameter does not used if multiple flags are set in dwParam1 because
multiple status items get changed. The application should invoke
phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can be one of PHONESTATE_LAMP,
PHONESTATE_DISPLAY, PHONESTATE_HANDSETHOOKSWITCH or
PHONESTATE_RINGMODE. Because the Cisco TSP cannot differentiate
among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value will always get used for
hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 will be the button ID that
is defined as in the PHONE_BUTTON message.

If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new
number of owners.

If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new
number of monitors.

If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp
identifier of the lamp that changed.

If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new
ring mode.

If dwParam1 is PHONESTATE_HANDSET, SPEAKER, or HEADSET,
dwParam2 contains the new hookswitch mode of that hookswitch device.
This parameter uses the following PHONEHOOKSWITCHMODE_
constants:

– PHONEHOOKSWITCHMODE_ONHOOK - The microphone and
speaker both remain on hook for this device.

– PHONEHOOKSWITCHMODE_MICSPEAKER - The microphone and
speaker both remain active for this device. The Cisco TSP cannot
distinguish among handsets, headsets, or speakers, so this value gets sent
when the device is off hook.
2-203
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the
Cisco TSP will send the new lamp state to the application in dwparam3 to
avoid the call to phoneGetLamp to obtain the state when dwparam2 is
PHONESTATE_LAMP.

TAPI Phone Structures
This section lists the Cisco-set attributes for each member of the PHONECAPS
structure. If the value of a structure member is device, line, or call specific, the
value for each condition is noted.

.

PHONECAPS
dwProviderInfoSize

dwProviderInfoOffset

"Cisco TSPxxx.TSP: Cisco IP PBX Service Provider Ver. X.X(x.x)" where
the text before the colon specifies the file name of the TSP, and the text after
"Ver. " specifies the version of the TSP.

dwPhoneInfoSize

dwPhoneInfoOffset

 "DeviceType:[type]" where type specifies the device type that is specified in
the Cisco CallManager database.

dwPermanentPhoneID

Table 2-8 TAPI Phone Structures

TAPI Phone Structure

PHONECAPS

PHONEINITIALIZEEXPARAMS

PHONEMESSAGE

VARSTRING
2-204
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
dwPhoneNameSize

dwPhoneNameOffset

"Cisco Phone: [deviceName]" where deviceName specifies the name of the
device in the Cisco CallManager database.

dwStringFormat

STRINGFORMAT_ASCII

dwPhoneStates

PHONESTATE_OWNER |

PHONESTATE_MONITORS |

PHONESTATE_DISPLAY | (Not set for CTI Route Points)

PHONESTATE_LAMP | (Not set for CTI Route Points)

PHONESTATE_RESUME |

PHONESTATE_REINIT |

PHONESTATE_SUSPEND

dwHookSwitchDevs

PHONEHOOKSWITCHDEV_HANDSET (Not set for CTI Route Points)

dwHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route
Points)

PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)

dwDisplayNumRows (Not set for CTI Route Points)

1

dwDisplayNumColumns

20 (Not set for CTI Route Points)

dwNumRingModes

3 (Not set for CTI Route Points)
2-205
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
dwPhoneFeatures (Not set for CTI Route Points)

PHONEFEATURE_GETDISPLAY |

PHONEFEATURE_GETLAMP |

PHONEFEATURE_GETRING |

PHONEFEATURE_SETDISPLAY |

PHONEFEATURE_SETLAMP

dwMonitoredHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route
Points)

PHONEINITIALIZEEXPARAMS

Description

The PHONEINITIALIZEEXPARAMS structure contains parameters that are
used to establish the association between an application and TAPI; for example,
the application selected event notification mechanism. The phoneInitializeEx
function uses this structure.

Structure Details

typedef struct phoneinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;
 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;
 DWORD dwCompletionKey;
} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;
2-206
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwOptions

One of the PHONEINITIALIZEEXOPTION_ Constants. Specifies the event
notification mechanism that the application desires to use.

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI
returns the event handle in this member.

hCompletionPort

If dwOptions specifies
PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this member the handle of an existing completion
port that is opened using CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies
PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned through the
lpCompletionKey parameter of GetQueuedCompletionStatus to identify the
completion message as a telephony message.
2-207
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
PHONEMESSAGE

Description

The PHONEMESSAGE structure contains the next message that is queued for
delivery to the application. The phoneGetMessage function returns the following
structure.

Structure Details

typedef struct phonemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Members

hDevice

A handle to a phone device.

dwMessageID

A phone message.

dwCallbackInstance

Instance data that is passed back to the application, which the application
specified in phoneInitializeEx. This DWORD is not interpreted by TAPI.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.
2-208
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
Further Details

For details on the parameter values that are passed in this structure, see “TAPI
Phone Messages.”

PHONESTATUS

Description

The PHONESTATUS structure describes the current status of a phone device. The
phoneGetStatus and TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this data structure.

Note The dwPhoneFeatures member is available only to applications that open the
phone device with an API version of 2.0 or later.

Structure Details

typedef struct phonestatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStatusFlags;
 DWORD dwNumOwners;
 DWORD dwNumMonitors;
 DWORD dwRingMode;
 DWORD dwRingVolume;
 DWORD dwHandsetHookSwitchMode;
 DWORD dwHandsetVolume;
 DWORD dwHandsetGain;
 DWORD dwSpeakerHookSwitchMode;
 DWORD dwSpeakerVolume;
 DWORD dwSpeakerGain;
 DWORD dwHeadsetHookSwitchMode;
 DWORD dwHeadsetVolume;
 DWORD dwHeadsetGain;
 DWORD dwDisplaySize;
 DWORD dwDisplayOffset;
2-209
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
 DWORD dwLampModesSize;
 DWORD dwLampModesOffset;
 DWORD dwOwnerNameSize;
 DWORD dwOwnerNameOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

DWORD dwPhoneFeatures;
} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size, in bytes, allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwStatusFlags

Provides a set of status flags for this phone device. This member uses one of
the PHONESTATUSFLAGS_ Constants.

dwNumOwners

The number of application modules with owner privilege for the phone.

dwNumMonitors

The number of application modules with monitor privilege for the phone.

dwRingMode

The current ring mode of a phone device.

dwRingVolume

0x8000

dwHandsetHookSwitchMode

The current hookswitch mode of the phone's handset.
PHONEHOOKSWITCHMODE_UNKNOWN
2-210
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
dwHandsetVolume

0

dwHandsetGain

0

dwSpeakerHookSwitchMode

The current hookswitch mode of the phone's speakerphone.
PHONEHOOKSWITCHMODE_UNKNOWN

dwSpeakerVolume

0

dwSpeakerGain

0

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset.
PHONEHOOKSWITCHMODE_UNKNOWN

dwHeadsetVolume

0

dwHeadsetGain

0

dwDisplaySize

dwDisplayOffset

0

dwLampModesSize

dwLampModesOffset

0

dwOwnerNameSize

dwOwnerNameOffset

The size, in bytes, of the variably sized field containing the name of the
application that is the current owner of the phone device, and the offset, in
bytes, from the beginning of this data structure. The name is the application
name provided by the application when it invoked with phoneInitialize or
2-211
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
phoneInitializeEx. If no application name was supplied, the application's
filename is used instead. If the phone currently has no owner,
dwOwnerNameSize is zero.

dwDevSpecificSize

dwDevSpecificOffset

Application can send XSI data to phone using DeviceDataPassThrough
device specific extension. Phone can pass back data to Application. The data
is returned as part of this field. The format of the data is as follows:

struct PhoneDevSpecificData

{
 DWORD m_DeviceDataSize ; // size of device data
 DWORD m_DeviceDataOffset ; // offset from PHONESTATUS

structure
 // this will follow the actual variable length device data.
}

dwPhoneFeatures

The application negotiates an extension version >= 0x00020000. The following
features are supported:

• PHONEFEATURE_GETDISPLAY

• PHONEFEATURE_GETLAMP

• PHONEFEATURE_GETRING

• PHONEFEATURE_SETDISPLAY

• PHONEFEATURE_SETLAMP

VARSTRING

Description

The VARSTRING structure returns variably sized strings. The line device class
and the phone device class both use it.

Note No extensibility exists with VARSTRING.
2-212
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
TAPI Phone Structures
Structure Details

typedef struct varstring_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStringFormat;
 DWORD dwStringSize;
 DWORD dwStringOffset;
} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned
information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful
information.

dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT_
Constants.

dwStringSize

dwStringOffset

The size, in bytes, of the variably sized device field that contains the string
information and the offset, in bytes, from the beginning of this data structure.

If a string cannot be returned in a variable structure, the dwStringSize and
dwStringOffset members get set in one of the following ways:

dwStringSize and dwStringOffset members both get set to zero.

dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the
byte at the given offset gets set to zero.
2-213
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Wave
The AVAudio32.dll implements the Wave interfaces to the Cisco wave drivers.
The system supports all APIs for input and output waveform devices.

.
Table 2-9 WaveFunctions

Wave Functions

waveOutOpen

waveOutClose

waveOutGetDevCaps

waveOutGetID

waveOutPrepareHeader

waveOutUnprepareHeader

waveOutGetPosition

waveOutWrite

waveOutReset

waveInOpen

waveInClose

waveInGetID

waveInPrepareHeader

waveInUnprepareHeader

waveInGetPosition

waveInAddBuffer

waveInStart

waveInReset
2-214
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
waveOutOpen

Description

The waveOutOpen function opens the given waveform-audio output device for
playback.

Function Details

MMRESULT waveOutOpen(
 LPHWAVEOUT phwo,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);

Parameters

phwo

Address that is filled with a handle identifying the open waveform-audio
output device. Use the handle to identify the device when other
waveform-audio output functions are called. This parameter might be NULL
if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a
device identifier or a handle of an open waveform-audio input device. You
can use the following flag instead of a device identifier:

WAVE_MAPPER - The function selects a waveform-audio output device that
is capable of playing the given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the
waveform-audio data to be sent to the device. You can free this structure
immediately after passing it to waveOutOpen.
2-215
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Note The formats that the TAPI Wave Driver supports include 16-bit PCM
at 8000 Hz, 8-bit mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window,
or the identifier of a thread to be called during waveform-audio playback to
process messages that are related to the progress of the playback. If no
callback function is required, this value can specify zero. For more
information on the callback function, see waveOutProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter
does not get used with the window callback mechanism.

fdwOpen

Flags for opening the device. The following value definitions apply:

– CALLBACK_EVENT - The dwCallback parameter represents an event
handle.

– CALLBACK_FUNCTION - The dwCallback parameter specifies a
callback procedure address.

– CALLBACK_NULL - No callback mechanism. This value specifies the
default setting.

– CALLBACK_THREAD - The dwCallback parameter represents a thread
identifier.

– CALLBACK_WINDOW - The dwCallback parameter specifies a
window handle.

– WAVE_ALLOWSYNC - If this flag is specified, a synchronous
waveform-audio device can be opened. If this flag is not specified while
a synchronous driver is opened, the device will fail to open.

– WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver
does not perform conversions on the audio data.

– WAVE_FORMAT_QUERY - If this flag is specified, waveOutOpen
queries the device to determine whether it supports the given format, but
the device does not actually open.
2-216
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
– WAVE_MAPPED - If this flag is specified, the uDeviceID parameter
specifies a waveform-audio device to which the wave mapper maps.

waveOutClose

Description

The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device. If the function succeeds, the
handle no longer remains valid after this call.

waveOutGetDevCaps

Description

The waveOutGetDevCaps function retrieves the capabilities of a given
waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps(
 UINT uDeviceID,
 LPWAVEOUTCAPS pwoc,
 UINT cbwoc
);
2-217
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Parameters

uDeviceID

Identifier of the waveform-audio output device. It can be either a device
identifier or a handle of an open waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information
about the capabilities of the device.

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.

waveOutGetID

Description

The waveOutGetID function retrieves the device identifier for the given
waveform-audio output device.

This function gets supported for backward compatibility. New applications can
cast a handle of the device rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID(
 HWAVEOUT hwo,
 LPUINT puDeviceID
);

Parameters

hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.
2-218
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
waveOutPrepareHeader

Description

The waveOutPrepareHeader function prepares a waveform-audio data block for
playback.

Function Details

MMRESULT waveOutPrepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be
prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutUnprepareHeader

Description

The waveOutUnprepareHeader function cleans up the preparation that the
waveOUtPrepareHeader function performs. Ensure this function is called after the
device driver is finished with a data block. You must call this function before
freeing the buffer.
2-219
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Function Details

MMRESULT waveOutUnprepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be cleaned
up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutGetPosition

Description

The waveOutGetPosition function retrieves the current playback position of the
given waveform-audio output device.

Function Details

MMRESULT waveOutGetPosition(
 HWAVEOUT hwo,
 LPMMTIME pmmt,
 UINT cbmmt
);

Parameters

hwo
2-220
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveOutWrite

Description

The waveOutWrite function sends a data block to the given waveform-audio
output device.

Function Details

MMRESULT waveOutWrite(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that contains information about the data
block.

cbwh

Size, in bytes, of the WAVEHDR structure.
2-221
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
waveOutReset

Description

The waveOutReset function stops playback on the given waveform-audio output
device and resets the current position to zero. All pending playback buffers get
marked as done and get returned to the application.

Function Details

MMRESULT waveOutReset(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device.

waveInOpen

Description

The waveInOpen function opens the given waveform-audio input device for
recording.

Function Details

MMRESULT waveInOpen(
 LPHWAVEIN phwi,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);
2-222
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Parameters

phwi

Address that is filled with a handle that identifies the open waveform-audio
input device. Use this handle to identify the device when calling other
waveform-audio input functions. This parameter can be NULL if
WAVE_FORMAT_QUERY is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a
device identifier or a handle of an open waveform-audio input device. You
can use the following flag instead of a device identifier:

WAVE_MAPPER - The function selects a waveform-audio input device that
is capable of recording in the specified format.

pwfx

Address of a WAVEFORMATEX structure that identifies the desired format
for recording waveform-audio data. You can free this structure immediately
after waveInOpen returns.

Note The formats that the TAPI Wave Driver supports include a 16-bit
PCM at 8000 Hz, 8-bit mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window,
or the identifier of a thread to be called during waveform-audio recording to
process messages that are related to the progress of recording. If no callback
function is required, this value can specify zero. For more information on the
callback function, see waveInProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter
does not get used with the window callback mechanism.

fdwOpen

Flags for opening the device. The following values definitions apply:

– CALLBACK_EVENT - The dwCallback parameter specifies an event
handle.
2-223
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
– CALLBACK_FUNCTION - The dwCallback parameter specifies a
callback procedure address.

– CALLBACK_NULL - No callback mechanism. This represents the
default setting.

– CALLBACK_THREAD - The dwCallback parameter specifies a thread
identifier.

– CALLBACK_WINDOW - The dwCallback parameter specifies a
window handle.

– WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver
does not perform conversions on the audio data.

– WAVE_FORMAT_QUERY - The function queries the device to
determine whether it supports the given format, but it does not open the
device.

– WAVE_MAPPED - The uDeviceID parameter specifies a
waveform-audio device to which the wave mapper maps.

waveInClose

Description

The waveInClose function closes the given waveform-audio input device.

Function Details

MMRESULT waveInClose(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device. If the function succeeds, the
handle no longer remains valid after this call.
2-224
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
waveInGetID

Description

The waveInGetID function gets the device identifier for the given
waveform-audio input device.

This function gets supported for backward compatibility. New applications can
cast a handle of the device rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID(
 HWAVEIN hwi,
 LPUINT puDeviceID
);

Parameters

hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveInPrepareHeader

Description

The waveInPrepareHeader function prepares a buffer for waveform-audio input.
2-225
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Function Details

MMRESULT waveInPrepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInUnprepareHeader

Description

The waveInUnprepareHeader function cleans up the preparation that the
waveInPrepareHeader function performs. This function must be called after the
device driver fills a buffer and returns it to the application. You must call this
function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);
2-226
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInGetPosition

Description

The waveInGetPosition function retrieves the current input position of the given
waveform-audio input device.

Function Details

MMRESULT waveInGetPosition(
 HWAVEIN hwi,
 LPMMTIME pmmt,
 UINT cbmmt
);

Parameters

hwi

Handle of the waveform-audio input device.

pmmt

Address of the MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
2-227
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
waveInAddBuffer

Description

The waveInAddBuffer function sends an input buffer to the given waveform-audio
input device. When the buffer is filled, the application receives notification.

Function Details

MMRESULT waveInAddBuffer(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInStart

Description

The waveInStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart(
 HWAVEIN hwi
);
2-228
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
Parameter

hwi

Handle of the waveform-audio input device.

waveInReset

Description

The waveInReset function stops input on the given waveform-audio input device
and resets the current position to zero. All pending buffers get marked as done and
get returned to the application.

Function Details

MMRESULT waveInReset(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device.
2-229
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 2 Cisco TAPI Implementation
Wave
2-230
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develo
OL-5436-01
C H A P T E R 3

Cisco Device Specific Extensions

This chapter describes the Cisco-specific TAPI extensions. It describes how to
invoke Cisco-specific TAPI extensions with the lineDevSpecific function. It also
describes a set of classes that can be used when calling phoneDevSpecific.

Cisco Line Device Specific Extensions
CiscoLineDevSpecific, the CCiscoPhoneDevSpecific class, represents the parent
class.

Table 3-1 lists the subclasses of Cisco Line Device Specific Extensions.

Table 3-1 Cisco-Specific TAPI functions

Cisco Functions Synopsis

CCiscoLineDevSpecific The CCiscoLineDevSpecific class specifies the parent class to the
following classes.

Message Waiting The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that the hLine parameter specifies.

Message Waiting Dirn The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that a parameter and remains
independent of the hLine parameter specifies.

Audio Stream Control The CCiscoLineDevSpecificUserControlRTPStream class controls the
audio stream for a line.
3-1
per Guide for Cisco CallManager 4.1(2)

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Set Status Messages The CCiscoLineDevSpecificSetStatusMsgs class controls the reporting
of certain line device specific messages for a line. The application
receives LINE_DEVSPECIFIC messages to signal when to stop and
start streaming RTP audio.

Redirect Reset Original
Called ID

This is not supported in CiscoTSP 4.0.
The CCiscoLineDevSpecificSwapHoldSetupTransfer class performs a
setupTransfer between a call that is in CONNECTED state and a call
that is in ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD
call to CONNECTED state. This action will then allow a
completeTransfer to be performed on the two calls.

Redirect Reset Original
Called ID

The CCiscoLineDevSpecificRedirectResetOrigCalled class gets used to
redirects a call to another party while resetting the original called ID of
the call to the destination of the redirect.

Port Registration per Call The CciscoLineDevSpecificPortRegistrationPerCall class gets used to
register a CTI Port or route Point for the Dynamic Port Registration
feature, which allows applications to specify the IP address and UDP
port number on a call-by-call basis.

Setting RTP Parameters for
Call

The CciscoLineDevSpecificSetRTPParamsForCall class sets the IP
address and UDP port number for the specified call.

Redirect Set Original Called
ID

The CciscoLineDevSpecificSetOrigCalled class gets used to redirect a
call to another party while setting the original called ID of the call to any
other party.

Join The CciscoLineDevSpecificJoin class gets used to join two or more calls
into one conference call.

Redirect FAC CMC The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect
a call to another party while including a FAC, CMC, or both.

Blind Transfer FAC CMC The CCiscoLineDevSpecificBlindTransferFACCMC class is used to
blind transfer a call to another party while including a FAC, CMC, or
both.

CTI Port Third Party
Monitoring

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used to
open a CTI port in third party mode.

Table 3-1 Cisco-Specific TAPI functions (continued)

Cisco Functions Synopsis
3-2
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Structures
This section describes device-specific extensions that have been made to the TAPI
structures that the CiscoTSP supports.

LINEDEVCAPS Device Specific Extensions

Description

The LineDevCaps_DevSpecificData structure describes the device-specific
extensions that the CiscoTSP has made to the LINEDEVCAPS structure.

Detail

typedef struct LineDevCaps_DevSpecificData
{

DWORD m_DevSpecificFlags;
}LINEDEVCAPS_DEV_SPECIFIC_DATA;

Parameters

DWORD m_DevSpecificFlags

A bit array that identifies device specific properties for the line. The bits
definition follows:

LINEDEVCAPSDEVSPECIFIC_PARKDN (0x00000001)—Indicates
whether this line is a Call Park DN.

Note This extension is only available if extension version 3.0
(0x00030000) or higher is negotiated.

CCiscoLineDevSpecific
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificMsgWaiting
|
+-- CCiscoLineDevSpecificMsgWaitingDirn
3-3
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
|
+-- CCiscoLineDevSpecificUserControlRTPStream
|
+--CCiscoLineDevSpecificSetStatusMsgs
|
+--CCiscoLineDevSpecificRedirectResetOrigCalled
|
+--CCiscoLineDevSpecificPortRegistrationPerCall
|
+--CCiscoLineDevSpecificSetRTPParamsForCall
|
+--CCiscoLineDevSpecificRedirectSetOrigCalled
|
+--CCiscoLineDevSpecificJoin
|
+--CCiscoLineDevSpecificRedirectFACCMC
|
+--CCiscoLineDevSpecificBlindTransferFACCMC
|
+--CCiscoLineDevSpecificCTIPortThirdPartyMonitor

Description

This section provides information on how to perform Cisco TAPI specific
functions with the CCiscoLineDevSpecific class, which represents the parent
class to all the following classes. It comprises a virtual class and is provided here
for informational purposes.

Header File

The file CiscoLineDevSpecific.h contains the constant, structure, and class
definition for the Cisco line device-specific classes.

Class Detail

class CCiscoLineDevSpecific
 {
 public:

CCicsoLineDevSpecific(DWORD msgType);
virtual ~CCiscoLineDevSpecific();

 DWORD GetMsgType(void) const {return m_MsgType;}
 void* lpParams() {return &m_MsgType;}
3-4
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
 virtual DWORD dwSize() = 0;
 private:
 DWORD m_MsgType;
 };

Functions

lpParms()

Function can be used to obtain the pointer to the parameter block.

dwSize()

Function will give the size of the parameter block area.

Parameter

m_MsgType

Specifies the type of message.

Subclasses

Each subclass of CCiscoLineDevSpecific has a different value assigned to the
parameter m_MsgType. If you are using C instead of C++, this is the first
parameter in the structure.

Enumeration

The CiscoLineDevSpecificType enumeration provides valid message identifiers.

enum CiscoLineDevSpecificType {
SLDST_MSG_WAITING = 1,
SLDST_MSG_WAITING_DIRN,
SLDST_USER_CRTL_OF_RTP_STREAM,
SLDST_SET_STATUS_MESSAGES,
SLDST_NUM_TYPE,
SLDST_SWAP_HOLD_SETUP_TRANSFER, // Not Supported in CiscoTSP 3.4 and
Beyond
SLDST_REDIRECT_RESET_ORIG_CALLED,
SLDST_USER_RECEIVE_RTP_INFO,
SLDST_USER_SET_RTP_INFO,
SLDST_JOIN,
SLDST_REDIRECT_FAC_CMC,
3-5
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
SLDST_BLIND_TRANSFER_FAC_CMC,
SLDST_CTI_PORT_THIRD_PARTY_MONITOR
};

Message Waiting
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificMsgWaiting

Description

The CCiscoLineDevSpecificMsgWaiting class turns the message waiting lamp on
or off for the line that the hLine parameter specifies.

Class Detail

class CCiscoLineDevSpecificMsgWaiting : public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificMsgWaiting() :
CCiscoLineDevSpecific(SLDST_MSG_WAITING){}
 virtual ~CCiscoLineDevSpecificMsgWaiting() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 };

Parameters

DWORD m_MsgType

Equals SLDST_MSG_WAITING.

DWORD m_BlinkRate

Any supported PHONELAMPMODE_ constants that are specified in the
phoneSetLamp() function.

Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are
supported on Cisco 79xx IP Phones.
3-6
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Message Waiting Dirn
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificMsgWaitingDirn

Description

The CCiscoLineDevSpecificMsgWaitingDirn class turns the message waiting
lamp on or off for the line that a parameter specifies and is independent of the
hLine parameter.

Class Detail

class CCiscoLineDevSpecificMsgWaitingDirn : public
CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificMsgWaitingDirn() :
 CCiscoLineDevSpecific(SLDST_MSG_WAITING_DIRN) {}
 virtual ~CCiscoLineDevSpecificMsgWaitingDirn() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 char m_Dirn[25];
 };

Parameters

DWORD m_MsgType

Equals SLDST_MSG_WAITING_DIRN.

DWORD m_BlinkRate

As in the CCiscoLineDevSpecificMsgWaiting message.

Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are
supported on Cisco 79xx IP Phones.

char m_Dirn[25]

The directory number for which the message waiting lamp should be set.
3-7
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Audio Stream Control
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificUserControlRTPStream

Description

The CCiscoLineDevSpecificUserControlRTPStream class controls the audio
stream of a line. To use this class, the lineNegotiateExtVersion API must be called
before opening the line. When lineNegotiateExtVersion is called, the highest bit
must be set on both the dwExtLowVersion and dwExtHighVersion parameters.
This causes the call to lineOpen to behave differently. The line does not actually
open, but waits for a lineDevSpecific call to complete the open with more
information. The CCiscoLineDevSpecificUserControlRTPStream class provides
the extra information that is required.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (OR
0x80000000 with the dwExtLowVersion and dwExtHighVersion parameters).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificUserControlRTPStream
message in the lpParams parameter.

Class Detail

class CCiscoLineDevSpecificUserControlRTPStream : public
CCiscoLineDevSpecific
 {

public:
 CCiscoLineDevSpecificUserControlRTPStream() :
 CCiscoLineDevSpecific(SLDST_USER_CRTL_OF_RTP_STREAM),
 m_ReceiveIP(-1),
 m_ReceivePort(-1),
 m_NumAffectedDevices(0)
 {
 memset(m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
3-8
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
 }
 virtual ~CCiscoLineDevSpecificUserControlRTPStream() {}
 DWORD m_ReceiveIP; // UDP audio reception IP
 DWORD m_ReceivePort; // UDP audio reception port
 DWORD m_NumAffectedDevices;
 DWORD m_AffectedDeviceID[10];

DWORD m_MediaCapCount;
MEDIA_CAPS m_MediaCaps;

 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_CRTL_OF_RTP_STREAM

DWORD m_ReceiveIP:

The RTP audio reception IP address in network byte order

DWORD m_ReceivePort:

The RTP audio reception port in network byte order

DWORD m_NumAffectedDevices:

The TSP returns this value. It contains the number of deviceIDs in the
m_AffectedDeviceID array that are valid. Any device with multiple directory
numbers that are assigned to it will have multiple TAPI lines, one per
directory number.

DWORD m_AffectedDeviceID[10]:

The TSP returns this value. It contains the list of deviceIDs for any device that
is affected by this call. Do not call lineDevSpecific for any other device in this
list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {

DWORD MediaPayload;

DWORD MaxFramesPerPacket;
3-9
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
DWORD G723BitRate;

} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec that is supported on a line. The limit
specifies 18. The following description shows each member in the
MEDIA_CAPS data structure:

MediaPayload specifies an enumerated integer that contains one of the
following values:

enum
 {
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

Read MaxFramesPerPacket as MaxPacketSize. It specifies a 16-bit
integer that is specified in milliseconds. It indicates the maximum
desired RTP packet size. Typically, this value gets set to 20.

G723BitRate specifies a 6-byte field that contains either the G.723.1
information bit rate or is ignored. The following list provides values for
the G.723.1 field are values.

enum
3-10
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
 {
 Media_G723BRate_5_3 = 1, //5.3Kbps
 Media_G723BRate_6_4 = 2 //6.4Kbps
 } Media_G723BitRate;

Set Status Messages
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetStatusMsgs

Description

The CCiscoLineDevSpecificSetStatusMsgs class is used to turn on or off the
status messages for the line specified by the hLine parameter. The CiscoTSP
supports the following flags:

• DEVSPECIFIC_MEDIA_STREAM—Setting this flag on a line turns on the
reporting of media streaming messages for that line. Clearing this flag will
turn off the reporting of media streaming messages for that line.

• DEVSPECIFIC_CALL_TONE_CHANGED—Setting this flag on a line
turns on the reporting of call tone changed events for that line. Clearing this
flag will turn off the reporting of call tone changed events for that line.

Note This extension only applies if extension version 0x00020001 or higher is
negotiated.

Class Detail

class CCiscoLineDevSpecificSetStatusMsgs : public
CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetStatusMsgs() :
CCiscoLineDevSpecific(SLDST_SET_STATUS_MESSAGES) {}
virtual ~CCiscoLineDevSpecificSetStatusMsgs() {}
DWORD m_DevSpecificStatusMsgsFlag;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
};
3-11
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Parameters

DWORD m_MsgType

Equals SLDST_SET_STATUS_MESSAGES.

DWORD m_DevSpecificStatusMsgsFlag

Bit array that identifies for which status changes a LINE_DEVSPECIFIC
message will be sent to the application.

The supported values follow:

#define DEVSPECIFIC_MEDIA_STREAM 0x00000001

#define DEVSPECIFIC_CALL_TONE_CHANGED 0x00000002

Swap-Hold/SetupTransfer

Note This is not supported in CiscoTSP 4.0 and beyond.

The CCiscoLineDevSpecificSwapHoldSetupTransfer class was used to perform a
SetupTransfer between a call that is in CONNECTED state and a call that is in the
ONHOLD state. This function would change the state of the connected call to
ONHOLDPENDTRANSFER state and the ONHOLD call to CONNECTED state.
This would then allow a CompleteTransfer to be performed on the 2 calls. In
CiscoTSP 4.0 and beyond, the TSP allows applications to use
lineCompleteTransfer() to transfer the calls without having to use the
CCiscoLineDevSpecificSwapHoldSetupTransfer function. Therefore, this
function returns LINEERR_OPERATIONUNAVAIL in CiscoTSP 4.0 and
beyond.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSwapHoldSetupTransfer
3-12
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Description

The CCiscoLineDevSpecificSwapHoldSetupTransfer class performs a
setupTransfer between a call that is in CONNECTED state and a call that in
ONHOLD state. This function will change the state of the connected call to
ONHOLDPENDTRANSFER state and the ONHOLD call to CONNECTED state.
This will then allow a completeTransfer to be performed on the two calls.

Note This extension only applies if extension version 0x00020002 or higher is
negotiated.

Class Details

class CCiscoLineDevSpecificSwapHoldSetupTransfer : public
CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificSwapHoldSetupTransfer() :
CCiscoLineDevSpecific(SLDST_SWAP_HOLD_SETUP_TRANSFER) {}
 virtual ~CCiscoLineDevSpecificSwapHoldSetupTransfer() {}
 DWORD heldCallID;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} //
subtract out the virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_SWAP_HOLD_SETUP_TRANSFER.

DWORD heldCallID

Equals the callid of the held call that is returned in dwCallID of
LPLINECALLINFO.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.
3-13
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Redirect Reset Original Called ID
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectResetOrigCalled

Description

The CCiscoLineDevSpecificRedirectResetOrigCalled class redirects a call to
another party while resetting the original called ID of the call to the destination
of the redirect.

Note This extension only applies if extension version 0x00020003 or higher is
negotiated.

Class Details

class CCiscoLineDevSpecificRedirectResetOrigCalled: public
CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificRedirectResetOrigCalled:
CCiscoLineDevSpecific(SLDST_REDIRECT_RESET_ORIG_CALLED) {}
 virtual ~CCiscoLineDevSpecificRedirectResetOrigCalled{}
 char m_DestDirn[25]; //redirect destination address
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} //
subtract out the virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_RESET_ORIG_CALLED.

DWORD m_DestDirn

Equals the destination address where the call needs to be redirected.

HCALL hCall (In lineDevSpecific parameter list)

Equals the handle of the connected call.
3-14
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Port Registration per Call
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificPortRegistrationPerCall

Description

The CCiscoLineDevSpecificPortRegistrationPerCall class registers the CTI Port
for the RTP parameters on a per call basis. With this request, the application
receives the new lineDevSpecific event requesting that it needs to set the RTP
parameters for the call.

To use this class, the lineNegotiateExtVersion API must be called before opening
the line. When calling lineNegotiateExtVersion, the highest bit must be set on
both the dwExtLowVersion and dwExtHighVersion parameters.

This causes the call to lineOpen to behave differently. The line is not actually
opened, but waits for a lineDevSpecific call to complete the open with more
information. The extra information required is provided in the
CciscoLineDevSpecificPortRegistrationPerCall class.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened (or
0x80000000 with the dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call lineDevSpecific with a CciscoLineDevSpecificPortRegistrationPerCall
message in the lpParams parameter.

Note This extension is only available if the extension version 0x00040000 or higher
gets negotiated.
3-15
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Class Details

class CCiscoLineDevSpecificPortRegistrationPerCall: public
CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificPortRegistrationPerCall () :
CCiscoLineDevSpecific(SLDST_USER_RECEIVE_RTP_INFO),
m_RecieveIP(-1), m_RecievePort(-1), m_NumAffectedDevices(0)
{
memset((char*)m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
}

virtual ~ CCiscoLineDevSpecificPortRegistrationPerCall () {}
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA_CAPSm_MediaCaps;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_RECEIVE_RTP_INFO

DWORD m_NumAffectedDevices:

This value is returned by the TSP. It contains the number of deviceIDs in the
m_AffectedDeviceID array which are valid. Any device with multiple
directory numbers assigned to it will have multiple TAPI lines, one per
directory number.

DWORD m_AffectedDeviceID[10]:

This value is returned by the TSP. It contains the list of deviceIDs for any
device affected by this call. Do not call lineDevSpecific for any other device
in this list.

DWORD m_mediaCapCount

The number of codecs supported for this line.

MEDIA_CAPS m_MediaCaps -
3-16
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
A data structure with the following format:

typedef struct {
DWORD MediaPayload;
DWORD MaxFramesPerPacket;
DWORD G723BitRate;
} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec supported on a line. The limit is 18.
The following is a description for each member in the MEDIA_CAPS data
structure:

MediaPayload is an enumerated integer containing one of the following
values.

enum
{
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;
3-17
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
MaxFramesPerPacket should read as MaxPacketSize and is a 16 bit
integer specified in milliseconds. It indicates the RTP packet size.
Typically, this value is set to 20.

G723BitRate is a six byte field which contains either the G.723.1
information bit rate or is ignored. The values for the G.723.1 field are
values enumerated as follows.

enum
{
Media_G723BRate_5_3 = 1, //5.3Kbps
Media_G723BRate_6_4 = 2 //6.4Kbps
} Media_G723BitRate;

Setting RTP Parameters for Call
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetRTPParamsForCall

Description

The CCiscoLineDevSpecificSetRTPParamsForCall class sets the RTP parameters
for a specific call.

Note This extension only applies if extension version 0x00040000 or higher gets
negotiated.

Class Details

class CciscoLineDevSpecificSetRTPParamsForCall: public
CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCall () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO) {}

virtual ~ CciscoLineDevSpecificSetRTPParamsForCall () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer
3-18
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
DWORD m_RecieveIP; // UDP audio reception IP
DWORD m_RecievePort; // UDP audio reception port

 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO

DWORD m_ReceiveIP

This is the RTP audio reception IP address in the network byte order to set
for the call.

DWORD m_ReceivePort

This is the RTP audio reception port in the network byte order to set for the
call.

Redirect Set Original Called ID
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectSetOrigCalled

Description

The CCiscoLineDevSpecificRedirectSetOrigCalled class redirects a call to
another party while setting the original called ID of the call to any other party.

Note This extension only applies if extension version 0x00040000 or higher gets
negotiated.
3-19
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Class Details

class CCiscoLineDevSpecificRedirectSetOrigCalled: public
CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificRedirectSetOrigCalled () :
CCiscoLineDevSpecific(SLDST_REDIRECT_SET_ORIG_CALLED) {}
 virtual ~ CCiscoLineDevSpecificRedirectSetOrigCalled () {}
 char m_DestDirn[25];
 char m_SetOriginalCalledTo[25];
 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_SET_ORIG_CALLED

char m_DestDirn[25]

Indicates the destination of the redirect. If this request is being used to
transfer to voice mail, then set this field to the voice mail pilot number of the
DN of the line whose voice mail you want to transfer to.

char m_SetOriginalCalledTo[25]

Indicates the DN to which the OriginalCalledParty needs to be set to. If this
request is being used to transfer to voice mail, then set this field to the DN of
the line whose voice mail you want to transfer to.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.

Join
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificJoin
3-20
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Description

The CCiscoLineDevSpecificJoin class joins two or more calls into one conference
call. Each of the calls being joined can either be in the ONHOLD or the
CONNECTED call state.

The Cisco CallManager may succeed in joining some of the calls specified in the
Join request, but not all. In this case, the Join request will succeed and the
Cisco CallManager attempts to join as many calls as possible.

Note This extension only applies if extension version 0x00040000 or higher gets
negotiated.

Class Details

class CCiscoLineDevSpecificJoin : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificJoin () :
CCiscoLineDevSpecific(SLDST_JOIN) {}
 virtual ~ CCiscoLineDevSpecificJoin () {}
 DWORD m_CallIDsToJoinCount;
 CALLIDS_TO_JOIN m_CallIDsToJoin;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals SLDST_JOIN

DWORD m_CallIDsToJoinCount

The number of callIDs contained in the m_CallIDsToJoin parameter.
3-21
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
CALLIDS_TO_JOIN m_CallIDsToJoin

A data structure that contains an array of dwCallIDs to join with the following
format:

typedef struct {
 DWORD CallID; // dwCallID to Join
} CALLIDS_TO_JOIN[MAX_CALLIDS_TO_JOIN];

where MAX_CALLIDS_TO_JOIN is defined as:

const DWORD MAX_CALLIDS_TO_JOIN = 14;

HCALL hCall (in LineDevSpecific parameter list)

equals the handle of the call that is being joined with callIDsToJoin to create
the conference.

Redirect FAC CMC
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectFACCMC

Description

The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect a call
to another party that requires a FAC, CMC, or both.

Note This extension is only available if extension version 0x00050000 or higher is
negotiated.

If the FAC is invalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, then the TSP will return a
new device specific error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificRedirectFACCMC: public
CCiscoLineDevSpecific
3-22
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
{
public:
 CCiscoLineDevSpecificRedirectFACCMC () :
CCiscoLineDevSpecific(SLDST_REDIRECT_FAC_CMC) {}
 virtual ~ CCiscoLineDevSpecificRedirectFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the redirect.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC
digits, then it must set this parameter to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC
digits, then it must set this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be redirected.

Blind Transfer FAC CMC
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificBlindTransferFACCMC
3-23
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Description

The CCiscoLineDevSpecificBlindTransferFACCMC class is used to blind
transfer a call to another party that requires a FAC, CMC, or both.

Note This extension is only available if extension version 0x00050000 or higher is
negotiated.

If the FAC is invalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, then the TSP will return a
new device specific error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificBlindTransferFACCMC: public
CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificBlindTransferFACCMC () :
CCiscoLineDevSpecific(SLDST_BLIND_TRANSFER_FAC_CMC) {}
 virtual ~ CCiscoLineDevSpecificBlindTransferFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_BLIND_TRANSFER_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the blind transfer.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC
digits, then it must set this parameter to a NULL string.

char m_CMC[17]
3-24
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
Indicates the CMC digits. If the application does not want to pass any CMC
digits, then it must set this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be blind transferred.

CTI Port Third Party Monitor
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificCTIPortThirdPartyMonitor

Description

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used for
opening CTI ports in third party mode.

To use this class, the lineNegotiateExtVersion API must be called before
opening the line. When calling lineNegotiateExtVersion the highest bit must
be set on both the dwExtLowVersion and dwExtHighVersion parameters.
This causes the call to lineOpen to behave differently. The line is not actually
opened, but waits for a lineDevSpecific call to complete the open with more
information. The extra information required is provided in the
CCiscoLineDevSpecificCTIPortThirdPartyMonitor class.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened. (OR
0x80000000 with the dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificCTIPortThirdPartyMonitor
message in the lpParams parameter.

Note This extension is only available if extension version 0x00050000 or higher is
negotiated.
3-25
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Phone Device Specific Extensions
Class Detail

class CCiscoLineDevSpecificCTIPortThirdPartyMonitor: public
CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificCTIPortThirdPartyMonitor () :
CCiscoLineDevSpecific(SLDST_CTI_PORT_THIRD_PARTY_MONITOR) {}
virtual ~ CCiscoLineDevSpecificCTIPortThirdPartyMonitor () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} //
subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

equals SLDST_CTI_PORT_THIRD_PARTY_MONITOR

Cisco Phone Device Specific Extensions
Table 3-2 lists the subclasses of CiscoPhoneDevSpecific.

CCiscoPhoneDevSpecific
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

Table 3-2 Cisco Phone Device Specific TAPI functions

Cisco Functions Synopsis

CCiscoPhoneDevSpecific The CCiscoPhoneDevSpecific class is the parent class to the following
class.

Device Data Passthrough Allows application to send the Device Specific XSI data through CTI.
3-26
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Phone Device Specific Extensions
Description

This section provides information on how to perform Cisco TAPI specific
functions with the CCiscoPhoneDevSpecific class, which is the parent class to all
the following classes. It is a virtual class and is provided here for informational
purposes.

Header File

The file CiscoLineDevSpecific.h contains the constant, structure and class
definition for the Cisco phone device specific classes.

Class Detail

class CCiscoPhoneDevSpecific
{

public :
CCiscoPhoneDevSpecific(DWORD msgType):m_MsgType(msgType) {;}
virtual ~CCiscoPhoneDevSpecific() {;}
DWORD GetMsgType (void) const { return m_MsgType;}
void *lpParams(void) const {return (void*)&m_MsgType;}
virtual DWORD dwSize(void) const = 0;

private :
DWORD m_MsgType ;

}

Functions

lpParms()

function can be used to obtain the pointer to the parameter block

dwSize()

function will give the size of the parameter block area

Parameter

m_MsgType

specifies the type of message.
3-27
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Phone Device Specific Extensions
Subclasses

Each subclass of CCiscoPhoneDevSpecific has a different value assigned to the
parameter m_MsgType. If you are using C instead of C++, this is the first
parameter in the structure.

Enumeration

Valid message identifiers are found in the CiscoPhoneDevSpecificType
enumeration.

enum CiscoLineDevSpecificType {
CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST = 1
};

Device Data Passthrough
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

XSI enabled IP phones allow applications to directly communicate with the phone
and access XSI features (e.g. manipulate display, get user input, play tone, etc.).
In order to allow TAPI applications access to some of these XSI capabilities
without having to setup and maintain an independent connection directly to the
phone, TAPI will provide the ability to send device data through the CTI interface.
This feature is exposed as Cisco TSP device specific extension.

PhoneDevSpecificDataPassthrough request is only supported for the IP phone
devices. Application has to open a TAPI phone device with minimum extension
version 0x00030000 to make use of this feature.
3-28
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Cisco Phone Device Specific Extensions
Description

The CCiscoPhoneDevSpecificDataPassThrough class is used to send the device
specific data to CTI controlled IP Phone devices.

Note This extension requires applications to negotiate extension version as
0x00030000.

Class Detail

class CCiscoPhoneDevSpecificDataPassThrough : public
CCiscoPhoneDevSpecific
{
public:

CCiscoPhoneDevSpecificDataPassThrough () :
 CCiscoPhoneDevSpecific(CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST)

{
 memset((char*)m_DeviceData, 0, sizeof(m_DeviceData)) ;
}
virtual ~CCiscoPhoneDevSpecificDataPassThrough() {;}
// data size determined by MAX_DEVICE_DATA_PASSTHROUGH_SIZE
TCHAR m_DeviceData[MAX_DEVICE_DATA_PASSTHROUGH_SIZE] ;
// subtract out the virtual funciton table pointer size
virtual DWORD dwSize (void) const {return (sizeof (*this)-4) ;}

}

Parameters

DWORD m_MsgType

equals CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST.

DWORD m_DeviceData

This is the character buffer containing the XML data to be sent to phone
device

Note MAX_DEVICE_DATA_PASSTHROUGH_SIZE = 2000
3-29
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
A phone can pass data to an application and it can be retrieved by using
PhoneGetStatus (PHONESTATUS:devSpecificData). See PHONESTATUS
description for further details.

Messages
This section describes the line device specific messages that the CiscoTSP
supports.

Description

An application receives nonstandard TAPI messages in the following
LINE_DEVSPECIFIC messages:

• A message to signal when to stop and start streaming RTP audio.

• A message containing the call handle of active calls when the application
starts up.

• A message indicating to set the RTP parameters based on the data of the
message.

• A message indicating that a CallToneChangedEvent has occurred on a call.

The message type is an enumerated integer with the following values:

enum CiscoLineDevSpecificMsgType
{

SLDSMT_START_TRANSMISION = 1,
SLDSMT_STOP_TRANSMISION,
SLDSMT_START_RECEPTION,
SLDSMT_STOP_RECEPTION,
SLDST_LINE_EXISTING_CALL,
SLDST_OPEN_LOGICAL_CHANNEL,
SLDST_CALL_TONE_CHANGED,
SLDSMT_NUM_TYPE

};

Start Transmission Events

• SLDSMT_START_TRANSMISION

When a message is received, the RTP stream transmission should commence.
3-30
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
– dwParam2 specifies the network byte order IP address of the remote
machine to which the RTP stream should be directed.

– dwParam3, specifies the high-order word that is the network byte order
IP port of the remote machine to which the RTP stream should be
directed.

– dwParam3, specifies the low-order word that is the packet size in
milliseconds to use.

The application receives these messages to signal when to start streaming RTP
audio. At extension version 1.0 (0x00010000), the parameters have the following
format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

At extension version 2.0 (0x00020000), start transmission has the following
format:

• dwParam1:from highest order bit to lowest

• First two bits blank

• Precedence value 3 bits

• Maximum frames per packet 8 bits

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start transmission has the following
format:

• hCall – The call of the Start Transmission event
3-31
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
• dwParam1:from highest order bit to lowest

– First two bits blank

– Precedence value 3 bits

– Maximum frames per packet 8 bits

– G723 bit rate 2 bits

– Silence suppression value 1 bit

– Compression type 8 bits

– Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

Start Reception Events

SLDSMT_START_RECEPTION

When a message is received, the RTP stream reception should commence.

– dwParam2 specifies the network byte order IP address of the local
machine to use.

– dwParam3, specifies the high-order word that is the network byte order
IP port to use.

– dwParam3, specifies the low-order high-order word that is the packet size
in milliseconds to use.

When a message is received, the RTP stream reception should commence.

At extension version 1, the parameters have the following format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

At extension version 2 start reception has the following format:

• dwParam1:from highest order bit to lowest
3-32
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
• First 13 bits blank

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start reception has the following format:

• hCall – The call of the Start Reception event

• dwParam1:from highest order bit to lowest

– First 13 bits blank

– G723 bit rate 2 bits

– Silence suppression value 1 bit

– Compression type 8 bits

– Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to
which the RTP stream should be directed in the high-order word and the
packet size in milliseconds in the low-order word.

Stop Transmission Events

When a message is received,, the appropriate part of the streaming should be
stopped.

SLDSMT_STOP_TRANSMISION

When a message is received, the transmission of the streaming should be
stopped.

At extension version 1.0 (0x00010000), start transmission has the following
format:

• dwParam1 – Message type
3-33
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
At extension version 4.0 (0x00040000), start transmission has the following
format:

• hCall – The call the Stop Transmission event is for

• dwParam1 – Message type

Stop Reception Events

When a message is received, the appropriate part of the streaming should be
stopped.

SLDSMT_STOP_RECEPTION

When a message is received, the reception of the streaming should be
stopped.

At extension version 1.0 (0x00010000), start transmission has the following
format:

• dwParam1 - message type

At extension version 4.0 (0x00040000), start transmission has the following
format:

• hCall – The call the Stop Reception event is for

• dwParam1 – Message type

Existing Call Events

SLDSMT_LINE_EXISTING_CALL

When the application starts up, this message will inform the application of
existing calls in the PBX.

These events inform the application of existing calls in the PBX when it starts up.
The format of the parameters follows:

• dwParam1 – Message type

• dwParam2 – Call object

• dwParam3 – TAPI call handle
3-34
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Messages
Open Logical Channel Events

When a message is received, the appropriate part of the streaming should be
started.

SLDSMT_OPEN_LOGICAL_CHANNEL

When a call has media established at a CTI Port or Route Point that is
registered for Dynamic Port Registration, this message is received indicating
that an IP address and UDP port number needs to be set for the call.

Note This extension is only available if extension version 0x00040000 or higher gets
negotiated.

The following is the format of the parameters:

• hCall - The call the Open Logical Channel event is for

• dwParam1 – Message type

• dwParam2 – Compression Type

• dwParam3 – Packet size in milliseconds

Call Tone Changed Events
SLDSMT_CALL_TONE_CHANGED

When a tone change occurs on a call, this message is received indicating the tone
and the feature that caused the tone change.

Note This extension is only available if extension version 0x00050000 or higher is
negotiated. In the CiscoTSP 4.1 release and beyond, this event will only be sent
for Call Tone Changed Events where the tone is CTONE_ZIPZIP and the tone is
being generated as a result of the FAC/CMC feature.

The format of the parameters is as follows:

• hCall—The call that the Call Tone Changed event is for

• dwParam—Message type

• dwParam2—Tone (see the following table)
3-35
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
• dwParam3—If dwParam2 is CTONE_ZIPZIP, this parameter contains a
bitmask with the following possible values:

CZIPZIP_FACREQUIRED—If this bit is set, it indicates that a FAC is
required.

CZIPZIP_CMCREQUIRED—If this bit is set, it indicates that a CMC is required.

Note For a DN that requires both codes, the first event is always for the FAC and CMC
code. The application has the option to send both codes separated by # in the same
request. The second event generation is optional based on what the application
sends in the first request.

Message Sequence Charts
This section illustrates a subset of the call scenarios supported by the CiscoTSP.
The event order is not guaranteed in all cases and can vary depending on the
scenario and the event.

The following is a list of abbreviations used in the CTI events shown in each
scenario.

• NP—Not Present

• LR—LastRedirectingParty

• CH—CtiCallHandle

• GCH—CtiGlobalCallHandle

• RIU—RemoteInUse flag

• DH—DeviceHandle

Tone Value Description

CTONE_ZIPZIP 0x31 Zip Zip Tone
3-36
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Manual Outbound Call

Precondition

Party A is idle.
3-37
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Action Party A

CTI Messages TAPI Messages TAPI Structures

1. Party A
goes offhook

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

2. Party A
dials Party B

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change
3-38
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
3. Party B
accepts call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDIN
G
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

4. Party B
answers call

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
ID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP
3-39
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStartReceptionEvent
, DH=A, CH=C1

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartReception
dwParam2=IP Address
dwParam3=Port

Note LINE_DEVSPECIFIC
 events are only
sent if the
application hs
requested for them
using
lineDevSpecific()

No change

CallStartTransmissionE
vent, DH=A, CH=C1

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartTransmiss
ion
dwParam2=IP Address
dwParam3=Port

Note LINE_DEVSPECIFIC
 events are only
sent if the
application hs
requested for them
using
lineDevSpecific()

No change
3-40
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Blind Transfer

Precondition

A calls B.

B answers.

A and B are connected.

Action Party A

CTI Messages TAPI Messages TAPI Structures

Party B does
a
lineBlindTra
nfser() to
blind
transfer call
from party A
to party C

CallPartyInfoChangedEv
ent, CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=True,
Called=C,
OriginalCalled=B,
LR=B,
Cause=BlindTransfer

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTE
DID, REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NP
dwRedirectionID=NP

Party B

CallStateChangedEvent,
CH=C2, State=Idle,
reason=Direct,
Calling=A, Called=B,
OriginalCalled=B,
LR=NULL

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NULL
dwRedirectionID=NULL

Party C
3-41
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
NewCallEvent, CH=C3,
origin=Internal_Inbound,
reason=BlindTransfer,
Calling=A, Called=C,
OriginalCalled=B, LR=B

TSPI:
LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Action Party A

CTI Messages TAPI Messages TAPI Structures

Party C is
offering

CallStateChangeEvent,
CH=C1, State=Ringback,
Reason=Direct,
Calling=A, Called=C,
OriginalCalled=B, LR=B

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Party C

CallStateChangedEvent,
CH=C3, State=Offering,
Reason=BlindTransfer,
Calling=A, Called=C,
OriginalCalled=B, LR=B

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C
3-42
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Redirect Set original Called (TxToVM)

Precondition

A calls B.

B answers.

A and B are connected.

Shared Line Scenarios

Initiate a New Call Manually

Party A and Party A’ are shared line appearances.

Party A and Party A’ are idle.

Action CTI Messages TAPI Messages TAPI Structures

1. Party A
goes offhook Party A

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct,
RIU=false

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP
3-43
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A’

NewCallEvent, CH=C1,
GCH=G1, Calling=A’,
Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct, RIU=true

LINE_APPNEWCALL
hDevice=A’
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-2
dwParam3=OWNER

LINECALLINFO
(hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTE
D
dwParam2=INACTIVE
dwParam3=0

No change

2. Party A
dials Party B Party A
3-44
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

Party A’

None None None

3. Party B
accepts call Party A

CallPartyInfoChangedEv
ent, CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=true,
Called=B,
Reason=Direct,
RIU=false

Ignored No change
3-45
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDIN
G
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLERID,
CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Party A’

CallPartyInfoChangedEv
ent, CH=C1,
CallingChanged=False,
Calling=A’,
CalledChanged=true,
Called=B,
Reason=Direct, RIU=true

Ignored No change
3-46
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A’, Called=B,
OrigCalled=B, LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTE
D
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CALLERID,
CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A’, Called=B,
OrigCalled=B, LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTE
D
dwParam2=INACTIVE
dwParam3=0

No change

4. Party B
answers call Party A
3-47
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTE
D
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTE
DID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

Party A’

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A’, Called=B,
OrigCalled=B, LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTE
D
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTE
DID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP
3-48
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Presentation Indication

Make a Call through Translation pattern

In the Translation pattern admin pages, both the callerID/Name and
ConnectedID/Name are set to "Restricted".

Action Party A

CTI Messages TAPI Messages TAPI Structures

Party A goes
offhook

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A dials
Party B
through
Translation
pattern

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change
3-49
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party B
accepts the
call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
CallingPartyPI =
Allowed, Called=B,
CalledPartyPI =
Restricted,
OrigCalled=B,
OrigCalledPI =restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT

dwCallerID=A
dwCallerIDName=A's
Name
dwCalledID=B
dwCalledIDName=
B name
dwConnectedID=NP
dwConnectedIDName=
NP
dwRedirectionID=NP
dwRedirectionIDName=
NP
dwRedirectionID=NP
dwRedirectionIDName=
NP
3-50
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party B
accepts the
call
(continued)

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A, CallingPI =
Allowed, Called=B,
CalledPI = Restricted,
OrigCalled=B,
OrigCalledPI =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwOrigin=OUTBOUND
dwReason=DIRECT

dwCallerID=A
dwCalledID=B

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwRedirectionID=NP

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
3-51
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party B
answers the
call

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A, CallingPI =
Allowed, Called=B,
CalledPI = Restricted,
OrigCalled=B,
OrigCalledPI =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
CONNECTEDID
dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT

dwCallerID=A
dwCallerIDName=A's
Name

dwCalledID=B
dwCalledIDName=
B Name

dwConnectedID=A,
dwConnectedIDName=
A's Name,
dwRedirectingID=NP
dwRedirectingIDName=
NP

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP

CallStartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartReception
dwParam2=IP Address
dwParam3=Port

No change
3-52
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Blind Transfer through Translation Pattern

A calls via translation pattern B.

B answers.

A and B are connected.

Party B
answers the
call

(continued)

CallStartTransmissionEv
ent, DH=A, CH=C1

LINE_DEVSPECIFIC1

hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartTransmission
dwParam2=IP Address
dwParam3=Port

No change

1. LINE_DEVSPECIFIC events are only sent if the application has requested for them using lineDevSpecific().

Action Party A

CTI Messages TAPI Messages TAPI Structures
3-53
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party B does a
lineBlindTranf
ser() to blind
transfer call
from party A to
party C via
translation
pattern

CallPartyInfoChangedEv
ent, CH=C1,
CallingChanged=False,
Calling=A,
CallingPartyPI=
Restricted,
CalledChanged=True,
Called=C,
CalledPartyPI=
Restricted,
OriginalCalled=NULL,
OriginalCalledPI=
Restricted, LR=NULL,
Cause=BlindTransfer

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTE
DID, REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT

dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=
B name

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=N
P dwRedirectingID=B
dwRedirectingIDName=
B name

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP
3-54
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party B

CallStateChangedEvent,
CH=C2, State=Idle,
reason=Direct,
Calling=A,
CallingPartyPI=Restricte
d, Called=B,
CalledPartyPI=Restricte
d, OriginalCalled=B,
OrigCalledPartyPI=Rest
ricted, LR=NULL

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT

dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=
B name

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=N
P dwRedirectingID=B
dwRedirectingIDName=
B name

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP
3-55
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party C

NewCallEvent, CH=C3,
origin=Internal_
Inbound,
reason=BlindTransfer,
Calling=A,
CallingPartyPI=
Restricted, Called=C,
CalledPartyPI=
Restricted,
OriginalCalled=B,
OrigCalledPartyPI=
Restricted, LR=B,
LastRedirectingPartyPI=
Restricted

TSPI:
LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER

dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=N
P dwRedirectingID=B
dwRedirectingIDName=
B's Name

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP

Party A
3-56
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party C is
offering

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
CallingPartyPI=
Restricted, Called=C,
CalledPartyPI=
Restricted,
OriginalCalled=B,
OrigCalledPartyPI=
Restricted, LR=B,
LastRedirectingPartyPI=
Restricted

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT

dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=N
P dwRedirectingID=B
dwRedirectingIDName=
B name

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP
3-57
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party C

CTI Messages TAPI Messages TAPI Structures

CallStateChangedEvent,
CH=C3, State=Offering,
Reason=BlindTransfer,
Calling=A,
CallingPartyPI=
Restricted, Called=C,
CalledPartyPI=
Restricted,
OriginalCalled=B,
OrigCalledPartyPI=
Restricted, LR=B,
LastRedirectingPartyPI=
Restricted

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL

dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP

dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=N
P dwRedirectingID=B
dwRedirectingIDName=
B's Name

dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=
NP
3-58
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination that Requires an FAC

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party
B requires a CMC instead of an FAC.

Party A

Actions CTI Message TAPI Messages TAPI Structures

Party A
goes
offhook

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL

hDevice=A

dwCallbackInstance=0

dwParam1=0

dwParam2=hCall-1

dwParam3=OWNER

LINECALLINFO (hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=NP

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALTONE

dwParam2=UNAVAIL

dwParam3=0

No change
3-59
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
dials
Party B

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALING

dwParam2=0

dwParam3=0

No change

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CAL
L_TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=CZIPZIP_FACR
EQUIRED

No change

Party A
3-60
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Manual Call to a Destination that Requires both FAC and CMC

Preconditions

Party A is Idle. Party B requires an FAC and a CMC.

Party A
dials the
FAC and
Party B
accepts
the call

CallStateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=PROCEEDING

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=CALLEDID

dwParam2=0

dwParam3=0

LINECALLINFO (hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=B

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=RINGBACK

dwParam2=0

dwParam3=0

No change

Party A
3-61
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A

Actions CTI Message TAPI Messages TAPI Structures

Party A
goes
offhook

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL

hDevice=A

dwCallbackInstance=0

dwParam1=0

dwParam2=hCall-1

dwParam3=OWNER

LINECALLINFO (hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=NP

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALTONE

dwParam2=UNAVAIL

dwParam3=0

No change
3-62
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
dials
Party B

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALING

dwParam2=0

dwParam3=0

No change

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CAL
L_TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=CZIPZIP_FACR
EQUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A
dials the
FAC.

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CAL
L_TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=
CZIPZIP_CMCREQUIRED

No change

Party A
3-63
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
dials the
CMC
and
Party B
accepts
the call.

CallStateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=PROCEEDING

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=CALLEDID

dwParam2=0

dwParam3=0

LINECALLINFO (hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=B

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=RINGBACK

dwParam2=0

dwParam3=0

No change

Party A
3-64
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
lineMakeCall to a Destination that Requires an FAC

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party
requires a CMC instead of an FAC

Party A

Actions CTI Message TAPI Messages TAPI Structures

Party A
does a
lineMake
Call() to
Party B

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=ORIGIN

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=REASON,
CALLERID

dwParam2=0

dwParam3=0

LINECALLINFO
(hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=NP

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALING

dwParam2=0

dwParam3=0

No change
3-65
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
does a
lineMake
Call() to
Party B
(cont.)

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CALL_
TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=CZIPZIP_FACRE
QUIRED

No change

Party A
does a
lineDial()
with the
FAC in the
dial string
and Party
B accepts
the call

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=PROCEEDING

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=CALLEDID

dwParam2=0

dwParam3=0

LINECALLINFO
(hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=B

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=RINGBACK

dwParam2=0

dwParam3=0

No change

Party A

Actions CTI Message TAPI Messages TAPI Structures
3-66
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
lineMakeCall to a Destination that Requires Both FAC and CMC

Preconditions

Party A is Idle. Party B requires both an FAC and a CMC.

Party A

Actions CTI Message TAPI Messages TAPI Structures

Party A
does a
lineMakeC
all() to
Party B

NewCallEvent, CH=C1,
GCH=G1, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=ORIGIN

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=REASON,
CALLERID

dwParam2=0

dwParam3=0

LINECALLINFO
(hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=NP

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=DIALING

dwParam2=0

dwParam3=0

No change
3-67
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
does a
lineMakeC
all() to
Party B
(Cont.)

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CALL_
TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=CZIPZIP_FACRE
QUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A
does a
lineDial()
with the
FAC in the
dial string

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=SLDSMT_CALL_
TONE_CHANGED

dwParam2=CTONE_ZIPZIP

dwParam3=
CZIPZIP_CMCREQUIRED

Party A

Actions CTI Message TAPI Messages TAPI Structures
3-68
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
Party A
does a
lineDial()
with the
CMC in
the dial
string and
Party B
accepts the
call.

CallStateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=PROCEEDING

dwParam2=0

dwParam3=0

LINE_CALLINFO

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=CALLEDID

dwParam2=0

dwParam3=0

LINECALLINFO
(hCall-1)

hLine=A

dwCallID=T1

dwOrigin=OUTBOUND

dwReason=DIRECT

dwCallerID=A

dwCalledID=B

dwConnectedID=NP

dwRedirectionID=NP

dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=B, OrigCalled=B,
LR=NP

LINE_CALLSTATE

hDevice=hCall-1

dwCallbackInstance=0

dwParam1=RINGBACK

dwParam2=0

dwParam3=0

No change

Party A

Actions CTI Message TAPI Messages TAPI Structures
3-69
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 3 Cisco Device Specific Extensions
Message Sequence Charts
3-70
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develo
OL-5436-01
C H A P T E R 4

Cisco TAPI Examples

This chapter provides examples that illustrate how to use the Cisco TAPI
implementation. This chapter includes the following subroutines:

• MakeCall

• OpenLine

• CloseLine
4-1
per Guide for Cisco CallManager 4.1(2)

Chapter 4 Cisco TAPI Examples
MakeCall
MakeCall

STDMETHODIMP CTACtrl::MakeCall(BSTR destNumber, long pMakeCallReqID, long hLine, BSTR
user2user, long translateAddr) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::Makecall %s %d %d %s %d\n",

T2A((LPTSTR)destNumber), pMakeCallReqID, hLine, T2A((LPTSTR)user2user),
translateAddr);

//CtPhoneNo m_pno;
 CtTranslateOutput to;

 //LPCSTR pszTranslatable;
CString sDialable;

CString theDestNumber(destNumber);

CtCall* pCall;
CtLine* pLine=CtLine::FromHandle((HLINE)hLine);

if (pLine==NULL) {
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pLine == NULL\n");
return S_FALSE;

} else {
pCall=new CtCall(pLine);
pCall->AddSink(this);

sDialable = theDestNumber;

if (translateAddr) {
//m_pno.SetWholePhoneNo((LPCSTR)theDestNumber);
//pszTranslatable = m_pno.GetTranslatable();
if (TSUCCEEDED(to.TranslateAddress(pCall->GetLine()->GetDeviceID(),

(LPCSTR)theDestNumber))) {
sDialable = to.GetDialableString();

}
}
TRESULT tr = pCall->MakeCall((LPCSTR)sDialable, 0, this);
if(TPENDING(tr) || TSUCCEEDED(tr)) {

//GCGC the correct hCall pointer is not being returned yet
if (translateAddr)

Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),
sDialable.AllocSysString());

else
4-2
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
OpenLine
Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),destNumber);

return S_OK;
} else {

//GCGC delete the call that was created above.
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pCall->MakeCall

failed\n");
delete pCall;
return S_FALSE;

 }
}

}

OpenLine

STDMETHODIMP CTACtrl::OpenLine(long lDeviceID, BSTR lineDirNumber, long lPriviledges,
 long lMediaModes, BSTR receiveIPAddress, long lreceivePort)

{
USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::OpenLine %d %s %d %d %s %d\n",

lDeviceID, T2A((LPTSTR)lineDirNumber), lPriviledges, lMediaModes,
T2A((LPTSTR)receiveIPAddress), lreceivePort);

int lineID;
TRESULT tr;
CString strReceiveIP(receiveIPAddress);

 CString strReqAddress(lineDirNumber);

//bool bTermMedia=((!strReceiveIP.IsEmpty()) && (lreceivePort!=0));
bool bTermMedia=(((lMediaModes & LINEMEDIAMODE_AUTOMATEDVOICE) != 0) &&

(lreceivePort!=0) && (!strReceiveIP.IsEmpty()));
CtLine* pLine;

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_DETAILED, "TAC: --> OpenLine()\n");

if ((lDeviceID<0) && !strcmp((char *)lineDirNumber, "")) {
tracer->tracef(SDI_LEVEL_ERROR, "TCD: error - bad device ID and no dirn to

open\n");
return S_FALSE;
4-3
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
OpenLine
}
lineID=lDeviceID;

if (lDeviceID<0) {
//search for line ID in list of lines.

 CtLineDevCaps ldc;
int numLines=::TfxGetNumLines();
for(DWORD nLineID = 0; (int)nLineID < numLines; nLineID++) {

if(/*ShouldShowLine(nLineID) &&*/ TSUCCEEDED(ldc.GetDevCaps(nLineID))) {
CtAddressCaps ac;
tracer->tracef(SDI_LEVEL_DETAILED, "CTACtrl::OpenLine :

Calling ac.GetAddressCaps %d 0\n", nLineID);
if (TSUCCEEDED(ac.GetAddressCaps(nLineID, 0))) {

// GCGC only one address supported
 CString strCurrAddress(ac.GetAddress());
 if (strReqAddress==strCurrAddress) {

lineID=nLineID;
break;

 }
}

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed\n");

}
}

}

if (lDeviceID<0) {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - could not find dirn %s to open line.\n",(LPCSTR)lineDirNumber);
return S_FALSE;

}

// if we are to do media termination; negotiate the extensions version

DWORD retExtVersion;
if (bTermMedia) {

TRESULT tr3;
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: lineNegotiateExtVersion - appHandle = %d, deviceID = %d, API ver = %d,
HiVer = %d, LoVer = %d\n", CtLine::GetAppHandle(), lineID,
CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L,
0x80000000 | 0x00020000L);

tr3=::lineNegotiateExtVersion(CtLine::GetAppHandle(),
lineID, CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L, // TAPI v1.3,
0x80000000 | 0x00020000L,
4-4
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
OpenLine
&retExtVersion);
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: lineNegotiateExtVersion returned: %d\n", tr3);
}

pLine=new CtLine();
tr=pLine->Open(lineID, this, lPriviledges, lMediaModes);
if(TSUCCEEDED(tr)) {

if (bTermMedia) {
if (retExtVersion==0x10000) {

CiscoLineDevSpecificUserControlRTPStream dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

} else {
//GCGC here put in the new calls to set the media types!
CiscoLineDevSpecificUserControlRTPStream2 dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
dsucr.m_MediaCapCount=4;

dsucr.m_MediaCaps[0].MediaPayload=4;
dsucr.m_MediaCaps[0].MaxFramesPerPacket=30;
dsucr.m_MediaCaps[0].G723BitRate=0;
dsucr.m_MediaCaps[1].MediaPayload=9;
dsucr.m_MediaCaps[1].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[1].G723BitRate=1;
dsucr.m_MediaCaps[2].MediaPayload=9;
dsucr.m_MediaCaps[2].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[2].G723BitRate=2;
dsucr.m_MediaCaps[3].MediaPayload=11;
dsucr.m_MediaCaps[3].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[3].G723BitRate=0;

TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

}
}

4-5
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
OpenLine
CtAddressCaps ac;
LPCSTR pszAddressName;
if (TSUCCEEDED(ac.GetAddressCaps(lineID, 0))) {

// GCGC only one address supported
 pszAddressName = ac.GetAddress();

} else {
pszAddressName = NULL;

 tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed.\n");
}

OpenedLine((long)pLine->GetHandle(), pszAddressName, 0);

// now let's try to open the associated phone device
// Get the phone from the line

DWORDnPhoneID;
bool b_phoneFound=false;
CtDeviceID did;

 if((m_bUsesPhones) && TSUCCEEDED(did.GetID("tapi/phone", pLine->GetHandle()))) {
 nPhoneID = did.GetDeviceID();

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: Retrieved phone device %d for line.\n",nPhoneID);

// check to see if phone device is already open

long hPhone;
CtPhone* pPhone;
if (!m_deviceID2phone.Lookup((long)nPhoneID,hPhone)) {

tracer->tracef(SDI_LEVEL_SIGNIFICANT,
"TAC: phone device not found in open list, opening it...\n");

pPhone=new CtPhone();
TRESULT tr_phone;
tr_phone=pPhone->Open(nPhoneID,this);
if (TSUCCEEDED(tr_phone)) {

::phoneSetStatusMessages(pPhone->GetHandle(),
PHONESTATE_DISPLAY | PHONESTATE_LAMP |
PHONESTATE_HANDSETHOOKSWITCH | PHONESTATE_HEADSETHOOKSWITCH |
PHONESTATE_REINIT | PHONESTATE_CAPSCHANGE | PHONESTATE_REMOVED,
PHONEBUTTONMODE_KEYPAD | PHONEBUTTONMODE_FEATURE |
PHONEBUTTONMODE_CALL |
PHONEBUTTONMODE_LOCAL | PHONEBUTTONMODE_DISPLAY,
PHONEBUTTONSTATE_UP | PHONEBUTTONSTATE_DOWN);

m_phone2line.SetAt((long)pPhone->GetHandle(),
(long)pLine->GetHandle());

m_line2phone.SetAt((long)pLine->GetHandle(),(long)pPhone->GetHandle());
m_deviceID2phone.SetAt((long)nPhoneID,(long)pPhone->GetHandle());
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), 1);

} else {
4-6
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
CloseLine
tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - phoneOpen failed with code %d\n", tr_phone);

}
} else {

pPhone=CtPhone::FromHandle((HPHONE)hPhone);
long theCount;

if (m_phoneUseCount.Lookup((long)pPhone->GetHandle(),theCount))
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), theCount+1);

else {
//GCGC this would be an error condition!
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - m_phoneUseCount does not contain phone entry.\n");
}

}
} else {

tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - could not retrieve PhoneID for line.\n");

}
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
return S_OK;

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - lineOpen failed: %d\n", tr);
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
OpenLineFailed(tr,0);
delete pLine;
return S_FALSE;

}
}

CloseLine
STDMETHODIMP CTACtrl::CloseLine(long hLine) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::CloseLine %d\n", hLine);

CtLine* pLine;
pLine=CtLine::FromHandle((HLINE) hLine);

if (pLine!=NULL) {
// close the line
pLine->Close();
// remove it from the list
4-7
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Chapter 4 Cisco TAPI Examples
CloseLine
delete pLine;
long hPhone;
long theCount;
if ((m_bUsesPhones) && (m_line2phone.Lookup(hLine,hPhone))) {

CtPhone* pPhone=CtPhone::FromHandle((HPHONE)hPhone);
if (pPhone!=NULL) {

if (m_phoneUseCount.Lookup(hPhone,theCount))
if (theCount>1) {

// decrease the number of lines using this phone
m_phoneUseCount.SetAt(hPhone,theCount-1);

}
else {

//nobody else is using this phone, so let's remove it.
m_deviceID2phone.RemoveKey((long)pPhone->GetDeviceID());
m_phone2line.RemoveKey(hPhone);
m_phoneUseCount.RemoveKey(hPhone);

//now let's close the phone
pPhone->Close();

}
}
//either way, remove the map entry from line to phone.
m_line2phone.RemoveKey(hLine);

}
return S_OK;

}
else
return S_FALSE;

}

4-8
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develo
OL-5436-01

A
 P P E N D I X A

CiscoTSP Interfaces

This appendix contains a listing of APIs that are supported and not supported.

Cisco TAPI Version 2.1 Interfaces

Core Package
Table A-1 lists each TAPI interface

Table A-1 Compliance to TAPI 2.1

API/Message/Structure

Cisco
TAPI
Support Comments

TAPI Line Functions

lineAccept Yes

lineAddProvider Yes

lineAddToConference Yes

lineAnswer Yes

lineBlindTransfer Yes

lineCallbackFunc Yes

lineClose Yes
A-1
per Guide for Cisco CallManager 4.1(2)

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
lineCompleteCall No

lineCompleteTransfer Yes

lineConfigDialog No

lineConfigDialogEdit No

lineConfigProvider Yes

lineDeallocateCall Yes

lineDevSpecific Yes

lineDevSpecificFeature No

lineDial Yes

lineDrop Yes

lineForward Yes

lineGatherDigits No

lineGenerateDigits Yes

lineGenerateTone Yes

lineGetAddressCaps Yes

lineGetAddressID Yes

lineGetAddressStatus Yes

lineGetAppPriority No

lineGetCallInfo Yes

lineGetCallStatus Yes

lineGetConfRelatedCalls Yes

lineGetCountry No

lineGetDevCaps Yes

lineGetDevConfig No

lineGetIcon No

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-2
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
lineGetID Yes

lineGetLineDevStatus Yes

lineGetMessage Yes

lineGetNewCalls Yes

lineGetNumRings Yes

lineGetProviderList Yes

lineGetRequest Yes

lineGetStatusMessages Yes

lineGetTranslateCaps Yes

lineHandoff Yes

lineHold Yes

lineInitialize Yes

lineInitializeEx Yes

lineMakeCall Yes

lineMonitorDigits Yes

lineMonitorMedia No

lineMonitorTones Yes

lineNegotiateAPIVersion Yes

lineNegotiateExtVersion Yes

lineOpen Yes

linePark Yes

linePickup No

linePrepareAddToConference Yes

lineRedirect Yes

lineRegisterRequestRecipient Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-3
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
lineReleaseUserUserInfo No

lineRemoveFromConference No

lineRemoveProvider Yes

lineSecureCall No

lineSendUserUserInfo No

lineSetAppPriority Yes

lineSetAppSpecific No

lineSetCallData No

lineSetCallParams No

lineSetCallPrivilege Yes

lineSetCallQualityOfService No

lineSetCallTreatment No

lineSetCurrentLocation No

lineSetDevConfig No

lineSetLineDevStatus No

lineSetMediaControl No

lineSetMediaMode No

lineSetNumRings Yes

lineSetStatusMessages Yes

lineSetTerminal No

lineSetTollList Yes

lineSetupConference Yes

lineSetupTransfer Yes

lineShutdown Yes

lineSwapHold No

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-4
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
lineTranslateAddress Yes

lineTranslateDialog Yes

lineUncompleteCall No

lineUnhold Yes

lineUnpark Yes

TAPI Line Messages

LINE_ADDRESSSTATE Yes

LINE_APPNEWCALL Yes

LINE_CALLINFO Yes

LINE_CALLSTATE Yes

LINE_CLOSE Yes

LINE_CREATE Yes

LINE_DEVSPECIFIC Yes

LINE_DEVSPECIFICFEATURE No

LINE_GATHERDIGITS Yes

LINE_GENERATE Yes

LINE_LINEDEVSTATE Yes

LINE_MONITORDIGITS Yes

LINE_MONITORMEDIA No

LINE_MONITORTONE Yes

LINE_REMOVE Yes

LINE_REPLY Yes

LINE_REQUEST Yes

TAPI Line Structures

LINEADDRESSCAPS Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-5
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
LINEADDRESSSTATUS Yes

LINEAPPINFO Yes

LINECALLINFO Yes

LINECALLLIST Yes

LINECALLPARAMS Yes

LINECALLSTATUS Yes

LINECALLTREATMENTENTRY No

LINECARDENTRY Yes

LINECOUNTRYENTRY Yes

LINECOUNTRYLIST Yes

LINEDEVCAPS Yes

LINEDEVSTATUS Yes

LINEDIALPARAMS No

LINEEXTENSIONID Yes

LINEFORWARD Yes

LINEFORWARDLIST Yes

LINEGENERATETONE Yes

LINEINITIALIZEEXPARAMS Yes

LINELOCATIONENTRY Yes

LINEMEDIACONTROLCALLSTATE No

LINEMEDIACONTROLDIGIT No

LINEMEDIACONTROLMEDIA No

LINEMEDIACONTROLTONE No

LINEMESSAGE Yes

LINEMONITORTONE Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-6
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
LINEPROVIDERENTRY Yes

LINEPROVIDERLIST Yes

LINEREQMEDIACALL No

LINEREQMAKECALL Yes

LINETERMCAPS No

LINETRANSLATECAPS Yes

LINETRANSLATEOUTPUT Yes

TAPI Phone Functions

phoneCallbackFunc Yes

phoneClose Yes

phoneConfigDialog No

phoneDevSpecific Yes

phoneGetButtonInfo No

phoneGetData No

phoneGetDevCaps Yes

phoneGetDisplay Yes

phoneGetGain No

phoneGetHookSwitch No

phoneGetIcon No

phoneGetID No

phoneGetLamp No

phoneGetMessage Yes

phoneGetRing Yes

phoneGetStatus No

phoneGetStatusMessages Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-7
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
phoneGetVolume No

phoneInitialize Yes

phoneInitializeEx Yes

phoneNegotiateAPIVersion Yes

phoneNegotiateExtVersion No

phoneOpen Yes

phoneSetButtonInfo No

phoneSetData No

phoneSetDisplay Yes

phoneSetGain No

phoneSetHookSwitch No

phoneSetLamp No

phoneSetRing No

phoneSetStatusMessages Yes

phoneSetVolume No

phoneShutdown Yes

TAPI Phone Messages

PHONE_BUTTON Yes

PHONE_CLOSE Yes

PHONE_CREATE Yes

PHONE_DEVSPECIFIC No

PHONE_REMOVE Yes

PHONE_REPLY Yes

PHONE_STATE Yes

TAPI Phone Structures

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-8
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
PHONEBUTTONINFO No

PHONECAPS Yes

PHONEEXTENSIONID No

PHONEINITIALIZEEXPARAMS Yes

PHONEMESSAGE Yes

PHONESTATUS No

VARSTRING Yes

TAPI Assisted Telephony Functions

tapiGetLocationInfo Yes

tapiRequestDrop No

tapiRequestMakeCall Yes

tapiRequestMediaCall No

TAPI Call Center Functions

lineAgentSpecific No

lineGetAgentActivityList No

lineGetAgentCaps No

lineGetAgentGroupList No

lineGetAgentStatus No

lineProxyMessage No

lineProxyResponse No

lineSetAgentActivity No

lineSetAgentGroup No

lineSetAgentState No

TAPI Call Center Messages

LINE_AGENTSPECIFIC No

LINE_AGENTSTATUS No

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-9
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
LINE_PROXYREQUEST No

TAPI Call Center Structures

LINEAGENTACTIVITYENTRY No

LINEAGENTACTIVITYLIST No

LINEAGENTCAPS No

LINEAGENTGROUPENTRY No

LINEAGENTGROUPLIST No

LINEAGENTSTATUS No

LINEPROXYREQUEST No

Wave Functions

waveInAddBuffer Yes

waveInClose Yes

waveInGetDevCaps No

waveInGetErrorText No

waveInGetID Yes

waveInGetNumDevs No

waveInGetPosition Yes

waveInMessage No

waveInOpen Yes

waveInPrepareHeader Yes

waveInProc No

waveInReset Yes

waveInStart Yes

waveInStop No

waveInUnprepareHeader Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-10
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
waveOutBreakLoop No

waveOutClose Yes

waveOutGetDevCaps Yes

waveOutGetErrorText No

waveOutGetID Yes

waveOutGetNumDevs No

waveOutGetPitch No

waveOutGetPlaybackRate No

waveOutGetPosition No

waveOutGetVolume No

waveOutMessage No

waveOutOpen Yes

waveOutPause No

waveOutPrepareHeader Yes

waveOutProc No

waveOutReset Yes

waveOutRestart No

waveOutSetPitch No

waveOutSetPlaybackRate No

waveOutSetVolume No

waveOutUnprepareHeader Yes

waveOutWrite Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-11
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Appendix A CiscoTSP Interfaces
Cisco TAPI Version 2.1 Interfaces
A-12
Cisco TAPI Developer Guide for Cisco CallManager 4.1(2)

OL-5436-01

Cisco TAPI Develope
OL-5436-01
I N D E X
A

architecture 1-2

AVAudio32.dll 2-214

B

Button ID values, defined by TAPI 2-195

button press monitoring 2-194

C

call control 1-3

CCiscoLineDevSpecificSetStatusMsgs 3-11

Cisco JTAPI

classes and interfaces A-1

CiscoLineDevSpecificMsgWaiting class 3-6,
3-7

classes

Audio Stream Control 3-8

CCiscoLineDevSpecificJoin 3-21

CCiscoLineDevSpecificPortRegistrationPer
Call 3-15

CCiscoLineDevSpecificRedirectResetOrigC
alled 3-14
CCiscoLineDevSpecificRedirectSetOrigCall
ed 3-19

CiscoLineDevSpecific 3-3

CiscoLineDevSpecificUserControlRTPStrea
m 3-8

Join 3-20

Message Waiting 3-6

Message Waiting Dirn 3-7

Port Registration per Call 3-15

Redirect Reset Original Called ID 3-14

Redirect Set Original Called ID 3-19

Set Status Messages 3-11

Setting RTP Params for Call 3-18

Swap-Hold/SetupTransfer 3-12

CloseLine 4-7

Cluster Support 1-4

Code samples

CloseLine 4-7

MakeCall 4-2

OpenLine 4-3

compatibility 1-11

CTI

call survivability 1-6

Cisco CallManager failure 1-5

Cisco TAPI application failure 1-6

manager 1-4
IN-1
r Guide for Cisco CallManager 4.1(2)

Index
manager failure 1-6

port 1-3

route point 1-4

D

directory change notification handling 1-8

E

examples

CloseLine 4-7

MakeCall 4-2

OpenLine 4-3

Extension Mobility 1-8

extension mobility support 1-8

extensions

Cisco line device specific TAPI
functions 3-1

Cisco phone device specific TAPI
functions 3-26

LINEDEVCAPS 3-3

structures 3-3

F

fault tolerance 1-4

first party call control 1-3

flags for opening the device 2-223

Formats supported by TAPI wave driver 2-216
IN-2
Cisco TAPI Developer Guide for Cisco CallManager 4
forwarding enhancement 1-7

functions

phone functions 2-168

L

line device structures

LINEADDRESSCAPS 2-101

LINEADDRESSSTATUS 2-113

LINEAPPINFO 2-115

LINECALLINFO 2-117

LINECALLLIST 2-124

LINECALLPARAMS 2-126

LINECALLSTATUS 2-128

LINECARDENTRY 2-133

LINECOUNTRYENTRY 2-135

LINECOUNTRYLIST 2-137

LINEDEVCAPS 2-139

LINEDEVSTATUS 2-146

LINEEXTENSIONID 2-148

LINEFORWARD 2-148

LINEFORWARDLIST 2-151

LINEGENERATETONE 2-152

LINEINITIALIZEEXPARAMS 2-153

LINELOCATIONENTRY 2-155

LINEMESSAGE 2-158

LINEMONITORTONE 2-159

LINEPROVIDERENTRY 2-160

LINEPROVIDERLIST 2-161
.1(2)
OL-5436-01

Index
LINEREQMAKECALL 2-162

LINETRANSLATECAPS 2-163

LINETRANSLATEOUTPUT 2-166

line functions

lineAccept 2-4

lineAddProvider 2-5

lineAddToConference 2-6

lineAnswer 2-7

lineBlindTransfer 2-8

lineCallbackFunc 2-9

lineClose 2-11

lineCompleteTransfer 2-11

lineConfigProvider 2-12

lineDeallocateCall 2-13

lineDevSpecific 2-14

lineDial 2-16

lineDrop 2-17

lineForward 2-18

lineGenerateDigits 2-21

lineGenerateTone 2-22

lineGetAddressCaps 2-24

lineGetAddressID 2-26

lineGetAddressStatus 2-27

lineGetCallInfo 2-28

lineGetCallStatus 2-28

lineGetConfRelatedCalls 2-29

lineGetDevCaps 2-29, 2-30

lineGetID 2-32

lineGetLineDevStatus 2-33
Cisco TAPI
OL-5436-01
lineGetMessage 2-34

lineGetNewCalls 2-35

lineGetNumRings 2-37

lineGetProviderList 2-38

lineGetRequest 2-39

lineGetStatusMessages 2-40

lineGetTranslateCaps 2-41

lineHandoff 2-42

lineHold 2-43

lineInitialize 2-44

lineInitializeEx 2-46

lineMakeCall 2-48

lineMonitorDigits 2-49

lineMonitorTones 2-50

lineNegotiateAPIVersion 2-51

lineNegotiateExtVersion 2-52

lineOpen 2-53

linePark 2-56

linePrepareAddToConference 2-58

lineRedirect 2-59

lineRegisterRequestRecipient 2-61

lineRemoveProvider 2-62

lineSetAppPriority 2-63

lineSetCallPrivilege 2-65

lineSetNumRings 2-66

lineSetStatusMessages 2-68

lineSetTollList 2-69

lineSetupConference 2-71

lineSetupTransfer 2-72
IN-3
 Developer Guide for Cisco CallManager 4.1(2)

Index
lineShutdown 2-73

lineTranslateAddress 2-74

lineTranslateDialog 2-76

lineUnhold 2-78

lineUnpark 2-78

line messages

LINE_ADDRESSSTATE 2-80

LINE_APPNEWCALL 2-82

LINE_CALLINFO 2-83

LINE_CALLSTATE 2-84

LINE_CLOSE 2-89

LINE_CREATE 2-90

LINE_DEVSPECIFIC 2-91

LINE_GENERATE 2-92

LINE_LINEDEVSTATE 2-93

LINE_MONITORTDIGITS 2-94

LINE_MONITORTONE 2-95

LINE_REMOVE 2-96

LINE_REPLY 2-97

LINE_REQUEST 2-98

lines

line functions 2-2

M

MakeCall 4-2

messages

device specific messages 3-30

LINE_DEVSPECIFIC 3-30
IN-4
Cisco TAPI Developer Guide for Cisco CallManager 4
line messages 2-79

phone messages 2-193

monitoring call park directory numbers 1-9

monitor privilege 2-185

multiple CiscoTSP 1-9

N

new and changed information xiii

O

OpenLine 4-3

owner privilege 2-185

P

Phone button values 2-195

phone functions

phoneCallbackFunc 2-169

phoneClose 2-170

phoneDevSpecific 2-170

phoneGetDevCaps 2-171

phoneGetDisplay 2-172

phoneGetLamp 2-173

phoneGetMessage 2-174

phoneGetRing 2-175

phoneGetStatusMessages 2-178

phoneInitialize 2-180
.1(2)
OL-5436-01

Index
phoneInitializeEx 2-181

phoneNegotiateAPIVersion 2-184

phoneOpen 2-185

phoneSetDisplay 2-187

phoneSetLamp 2-188

phoneSetStatusMessages 2-190

phoneShutdown 2-192

phone messages

PHONE_BUTTON 2-194

PHONE_CLOSE 2-197

PHONE_CREATE 2-198

PHONE_REMOVE 2-199

PHONE_REPLY 2-200

PHONE_STATE 2-201

PHONEPRIVILEGE_MONITOR 2-187

PHONEPRIVILEGE_OWNER 2-187

Phone status changes 2-190

phone structure

PHONECAPS 2-204

phone structures

PHONEINITIALIZEEXPARAMS 2-206

PHONEMESSAGE 2-208

R

Ring modes supported 2-176
Cisco TAPI
OL-5436-01
S

Status changes, phone devices 2-190

structures

line device 2-99

phone structures 2-204

supported device types 1-7

T

TAPI Wave Driver, formats supported 2-223

third party call control 1-3

W

wave functions

waveInAddBuffer 2-228

waveInClose 2-224

waveInGetID 2-225

waveInGetPosition 2-227

waveInOpen 2-222

waveInPrepareHeader 2-225

waveInReset 2-229

waveInStart 2-228

waveInUnprepareHeader 2-226

waveOutClose 2-217

waveOutGetDevCaps 2-217

waveOutGetID 2-218

waveOutGetPosition 2-220
IN-5
 Developer Guide for Cisco CallManager 4.1(2)

Index
waveOutOpen 2-215

waveOutPrepareHeader 2-219

waveOutReset 2-222

waveOutUnprepareHeader 2-219

waveOutWrite 2-221

X

xsi object pass through 1-12
IN-6
Cisco TAPI Developer Guide for Cisco CallManager 4
.1(2)

OL-5436-01

	Contents
	Preface
	Introduction
	Purpose
	Audience
	New and Changed Information
	CiscoTSP 4.1(2) Enhancements
	FAC and CMC Support
	CTI Port Third-Party Monitoring
	QSIG Path Replacement
	Progressing Call State
	Transfer/Conference Destination DN in Setup Request Support

	Modified CiscoTSP 4.1(2) Entities
	CiscoTSP 4.0 Enhancements
	Dynamic Port Registration
	Media Termination at Route Point
	Redirect Support for Blind Transfer
	Redirect Set Original Called ID
	Multiple Calls per Line Appearance
	Shared Line Appearance
	Select Calls
	Transfer Changes
	Direct Transfer
	Conference Changes
	Call Join
	Privacy Release
	Barge and cBarge
	TSP Auto Update Functionality
	QoS Support
	Forwarding Changes
	Presentation Indication Flag

	Modified CiscoTSP 4.0 Entities
	Changes From CiscoTSP 3.3 to CiscoTSP 4.0
	Line In-Service or Out-of-Service
	LINE_CALLINFO
	User Deletion from Directory
	Removal of lineDevSpecific() - Swap Hold Setup Transfer
	Call Reason Enhancements
	Changes to phoneSetDisplay()

	CiscoTSP 3.3 Enhancements
	Reporting TSP Initialization Problems or Errors to the Application

	New or Changed CiscoTSP 3.3 Entities
	Changes From CiscoTSP 3.2 to CiscoTSP 3.3
	User Deletion From Directory
	Opening Two Lines on One CTI Port Device

	CiscoTSP 3.2 Enhancements
	Changes From CiscoTSP 3.1 to CiscoTSP 3.2
	CiscoTSP 3.1 Enhancements
	Changes From CiscoTSP 3.0 to CiscoTSP 3.1
	Line In Service or Out of Service
	LINE_CALLINFO

	New or Changed CiscoTSP 3.1 Entities

	Organization
	Related Documentation
	Required Software
	Supported Windows Platforms
	Conventions
	Obtaining Documentation
	Cisco.com
	Ordering Documentation

	Documentation Feedback
	Obtaining Technical Assistance
	Cisco Technical Support Website
	Submitting a Service Request
	Definitions of Service Request Severity

	Obtaining Additional Publications and Information

	Overview
	Architecture
	Call Control
	First-Party Call Control
	Third-Party Call Control

	CTI Port
	CTI Route Point
	CTI Manager (Cluster Support)
	Cisco�CallManager Failure
	Call Survivability
	CTI Manager Failure
	Cisco�TAPI Application Failure

	Supported Device Types
	Forwarding
	Extension Mobility Support
	Directory Change Notification Handling
	Monitoring Call Park Directory Numbers
	Multiple CiscoTSP
	Compatibility
	XSI Object Pass Through

	Cisco�TAPI Implementation
	TAPI Line Functions
	lineAccept
	Description
	Function Details
	Parameters

	lineAddProvider
	Description
	Function Details
	Parameters
	Return Values

	lineAddToConference
	Description
	Function Details
	Parameters

	lineAnswer
	Description
	Function Details
	Parameters

	lineBlindTransfer
	Description
	Function Details
	Parameters

	lineCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	lineClose
	Description
	Function Details
	Parameter

	lineCompleteTransfer
	Description
	Function Details
	Parameters

	lineConfigProvider
	Description
	Function Details
	Parameters
	Return Values

	lineDeallocateCall
	Description
	Function Details
	Parameter

	lineDevSpecific
	Description
	Function Details
	Parameters

	lineDial
	Description
	Function Details
	Parameters

	lineDrop
	Description
	Function Details
	Parameters

	lineForward
	Description
	Function Details
	Parameters
	Return Values

	lineGenerateDigits
	Description
	Function Details
	Parameters

	lineGenerateTone
	Description
	Function Details
	Parameters

	lineGetAddressCaps
	Description
	Function Details
	Parameters

	lineGetAddressID
	Description
	Function Details
	Parameters

	lineGetAddressStatus
	Description
	Function Details
	Parameters

	lineGetCallInfo
	Description
	Function Details
	Parameters

	lineGetCallStatus
	Description
	Function Details
	Parameters

	lineGetConfRelatedCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetDevCaps
	Description
	Function Details
	Parameters

	lineGetID
	Description
	Function Details
	Parameters

	lineGetLineDevStatus
	Description
	Function Details
	Parameters

	lineGetMessage
	Description
	Function Details
	Parameters
	Return Values

	lineGetNewCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineGetProviderList
	Description
	Function Details
	Parameters
	Return Values

	lineGetRequest
	Description
	Function Details
	Parameters
	Return Values

	lineGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	lineGetTranslateCaps
	Description
	Function Details
	Parameters
	Return Values

	lineHandoff
	Description
	Function Details
	Parameters
	Return Values

	lineHold
	Description
	Function Details
	Parameter

	lineInitialize
	Description
	Function Details
	Parameters
	Return Values

	lineInitializeEx
	Description
	Function Details
	Parameters

	lineMakeCall
	Description
	Function Details
	Parameters

	lineMonitorDigits
	Description
	Function Details
	Parameters

	lineMonitorTones
	Description
	Function Details
	Parameters

	lineNegotiateAPIVersion
	Description
	Function Details
	Parameters

	lineNegotiateExtVersion
	Description
	Function Details
	Parameters

	lineOpen
	Description
	Function Details
	Parameters

	linePark
	Description
	Function Details
	Parameters

	linePrepareAddToConference
	Description
	Function Details
	Parameters
	Return Values

	lineRedirect
	Description
	Function Details
	Parameters

	lineRegisterRequestRecipient
	Description
	Function Details
	Parameters
	Return Values

	lineRemoveProvider
	Description
	Function Details
	Parameters
	Return Values

	lineSetAppPriority
	Description
	Function Details
	Parameters
	Return Values

	lineSetCallPrivilege
	Description
	Function Details
	Parameters
	Return Values

	lineSetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineSetStatusMessages
	Description
	Function Details
	Parameters

	lineSetTollList
	Description
	Function Details
	Parameters
	Return Values

	lineSetupConference
	Description
	Function Details
	Parameters

	lineSetupTransfer
	Description
	Function Details
	Parameters

	lineShutdown
	Description
	Function Details
	Parameters

	lineTranslateAddress
	Description
	Function Details
	Parameters
	Return Values

	lineTranslateDialog
	Description
	Function Details
	Parameters
	Return Values

	lineUnhold
	Description
	Function Details
	Parameters

	lineUnpark
	Description
	Function Details
	Parameters

	TAPI Line Messages
	LINE_ADDRESSSTATE
	Description
	Function Details
	Parameters

	LINE_APPNEWCALL
	Description
	Function Details
	Parameters

	LINE_CALLINFO
	Description
	Function Details
	Parameters

	LINE_CALLSTATE
	Description
	Function Details
	Parameters

	LINE_CLOSE
	Description
	Function Details
	Parameters

	LINE_CREATE
	Description
	Function Details
	Parameters

	LINE_DEVSPECIFIC
	Description
	Function Details
	Parameters

	LINE_GENERATE
	Description
	Function Details
	Parameters

	LINE_LINEDEVSTATE
	Description
	Function Details
	Parameters

	LINE_MONITORDIGITS
	Description
	Function Details
	Parameters

	LINE_MONITORTONE
	Description
	Function Details
	Parameters

	LINE_REMOVE
	Description
	Function Details
	Parameters

	LINE_REPLY
	Description
	Function Details
	Parameters

	LINE_REQUEST
	Description
	Function Details
	Parameters

	TAPI Line Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	Description
	Structure Details
	Members

	LINECALLINFO
	LINECALLLIST
	Description
	Structure Details
	Members

	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	Description
	Structure Details
	Members

	LINECOUNTRYENTRY
	Description
	Structure Details
	Members

	LINECOUNTRYLIST
	Description
	Structure Details
	Members

	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	Description
	Structure Details
	Members

	LINEFORWARDLIST
	Description
	Structure Details
	Members

	LINEGENERATETONE
	Description
	Structure Details
	Members

	LINEINITIALIZEEXPARAMS
	Description
	Structure Details
	Members
	Further Details

	LINELOCATIONENTRY
	Description
	Structure Details
	Members

	LINEMESSAGE
	Description
	Structure Details
	Members
	Further Details

	LINEMONITORTONE
	Description
	Structure Details
	Members

	LINEPROVIDERENTRY
	Description
	Structure Details
	Members

	LINEPROVIDERLIST
	Description
	Structure Details
	Members

	LINEREQMAKECALL
	Description
	Structure Details
	Members

	LINETRANSLATECAPS
	Description
	Structure Details
	Members

	LINETRANSLATEOUTPUT
	Description
	Structure Details
	Members

	TAPI Phone Functions
	phoneCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	phoneClose
	Description
	Function Details
	Parameter

	phoneDevSpecific
	Description
	Function Details
	Parameter

	phoneGetDevCaps
	Description
	Function Details
	Parameters

	phoneGetDisplay
	Description
	Function Details
	Parameters

	phoneGetLamp
	Description
	Function Details
	Parameters

	phoneGetMessage
	Description
	Function Details
	Parameters
	Return Values

	phoneGetRing
	Description
	Function Details
	Parameters

	phoneGetStatus
	Description
	Function Details
	Parameters
	Return Values

	phoneGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	phoneInitialize
	Description
	Function Details
	Parameters
	Return Values

	phoneInitializeEx
	Description
	Function Details
	Parameters
	Return Values

	phoneNegotiateAPIVersion
	Description
	Function Details
	Parameters
	Return Values

	phoneOpen
	Description
	Function Details
	Parameters

	phoneSetDisplay
	Description
	Function Details
	Parameters

	phoneSetLamp
	Description
	Function Details
	Parameters

	phoneSetStatusMessages
	Description
	Function Details
	Parameters

	phoneShutdown
	Description
	Function Details
	Parameter
	Return Values

	TAPI Phone Messages
	PHONE_BUTTON
	Description
	Function Details
	Parameters

	PHONE_CLOSE
	Description
	Function Details
	Parameters

	PHONE_CREATE
	Description
	Function Details
	Parameters

	PHONE_REMOVE
	Description
	Function Details
	Parameters

	PHONE_REPLY
	Description
	Function Details
	Parameters

	PHONE_STATE
	Description
	Function Details
	Parameters

	TAPI Phone Structures
	PHONECAPS
	PHONEINITIALIZEEXPARAMS
	Description
	Structure Details
	Members

	PHONEMESSAGE
	Description
	Structure Details
	Members
	Further Details

	PHONESTATUS
	Description
	Structure Details
	Members

	VARSTRING
	Description
	Structure Details
	Members

	Wave
	waveOutOpen
	Description
	Function Details
	Parameters

	waveOutClose
	Description
	Function Details
	Parameter

	waveOutGetDevCaps
	Description
	Function Details
	Parameters

	waveOutGetID
	Description
	Function Details
	Parameters

	waveOutPrepareHeader
	Description
	Function Details
	Parameters

	waveOutUnprepareHeader
	Description
	Function Details
	Parameters

	waveOutGetPosition
	Description
	Function Details
	Parameters

	waveOutWrite
	Description
	Function Details
	Parameters

	waveOutReset
	Description
	Function Details
	Parameter

	waveInOpen
	Description
	Function Details
	Parameters

	waveInClose
	Description
	Function Details
	Parameter

	waveInGetID
	Description
	Function Details
	Parameters

	waveInPrepareHeader
	Description
	Function Details
	Parameters

	waveInUnprepareHeader
	Description
	Function Details
	Parameters

	waveInGetPosition
	Description
	Function Details
	Parameters

	waveInAddBuffer
	Description
	Function Details
	Parameters

	waveInStart
	Description
	Function Details
	Parameter

	waveInReset
	Description
	Function Details
	Parameter

	Cisco Device Specific Extensions
	Cisco Line Device Specific Extensions
	Structures
	LINEDEVCAPS Device Specific Extensions

	CCiscoLineDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Message Waiting
	Description
	Class Detail
	Parameters

	Message Waiting Dirn
	Description
	Class Detail
	Parameters

	Audio Stream Control
	Description
	Class Detail
	Parameters

	Set Status Messages
	Description
	Class Detail
	Parameters

	Swap-Hold/SetupTransfer
	Description
	Class Details
	Parameters

	Redirect Reset Original Called ID
	Description
	Class Details
	Parameters

	Port Registration per Call
	Description
	Class Details
	Parameters

	Setting RTP Parameters for Call
	Description
	Class Details
	Parameters

	Redirect Set Original Called ID
	Description
	Class Details
	Parameters

	Join
	Description
	Class Details
	Parameters

	Redirect FAC CMC
	Description
	Class Detail
	Parameters

	Blind Transfer FAC CMC
	Description
	Class Detail
	Parameters

	CTI Port Third Party Monitor
	Description
	Class Detail
	Parameters

	Cisco Phone Device Specific Extensions
	CCiscoPhoneDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Device Data Passthrough
	Description
	Class Detail
	Parameters

	Messages
	Description
	Call Tone Changed Events

	Message Sequence Charts
	Manual Outbound Call
	Blind Transfer
	Redirect Set original Called (TxToVM)
	Shared Line Scenarios
	Presentation Indication
	Blind Transfer through Translation Pattern

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination that Requires both FAC and CMC
	lineMakeCall to a Destination that Requires an FAC
	lineMakeCall to a Destination that Requires Both FAC and CMC

	Cisco TAPI Examples
	MakeCall
	OpenLine
	CloseLine

	CiscoTSP Interfaces
	Cisco�TAPI Version 2.1 Interfaces
	Core Package

	Index

